cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A323368 Lexicographically earliest sequence such that a(i) = a(j) => A000035(i) = A000035(j) and A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 51, 69, 70, 71, 58, 72, 73, 74, 75, 76, 77, 78, 79, 54, 80, 59, 75, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A296089(i) = A296089(j),
a(i) = a(j) => A323238(i) = A323238(j).

Crossrefs

Differs from A296089 for the first time at n=103, where a(103)=88, while A296089(103)=56.
Cf. also A323366.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    v323368 = rgs_transform(vector(up_to, n, [(n%2), A003557(n), A048250(n)]));
    A323368(n) = v323368[n];

A323369 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and f(n) = A323368(n) for any other number.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 24, 26, 3, 27, 28, 29, 3, 30, 3, 31, 32, 22, 3, 33, 34, 35, 36, 37, 3, 38, 36, 39, 40, 41, 3, 42, 3, 30, 43, 44, 45, 46, 3, 47, 48, 46, 3, 49, 3, 50, 51, 52, 48, 53, 3, 54, 55, 56, 3, 57, 58, 59, 60, 61, 3, 62, 63, 42, 64, 46, 60, 65, 3, 66, 67, 68, 3, 69, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

Restricted growth sequence transform of function f, where f(n) = 0 for odd primes, and for any other number, f(n) = [A000035(n), A003557(n), A048250(n)].
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A322588(i) = A322588(j),
a(i) = a(j) => A323238(i) = A323238(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    Aux323369(n) = if((n>2)&&isprime(n),0,[(n%2), A003557(n), A048250(n)]);
    v323369 = rgs_transform(vector(up_to, n, Aux323369(n)));
    A323369(n) = v323369[n];

A323372 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => A003557(i) = A003557(j) and A323363(i) = A323363(j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 29, 65, 66, 67, 68, 69, 58, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 79
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

Restricted growth sequence transform of ordered pair [A003557(n), A323363(n)].
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A323364(i) = A323364(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
    v323363 = DirInverse(vector(up_to,n,A001615(n)));
    A323363(n) = v323363[n];
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    v323372 = rgs_transform(vector(up_to, n, [A003557(n), A323363(n)]));
    A323372(n) = v323372[n];

A291752 Compound filter: a(n) = P(A101296(n), A291751(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 18, 17, 40, 30, 71, 58, 82, 23, 126, 80, 124, 124, 197, 57, 196, 138, 237, 214, 235, 93, 359, 256, 304, 356, 412, 327, 570, 173, 640, 469, 500, 469, 791, 498, 599, 634, 828, 255, 912, 668, 867, 909, 410, 408, 1237, 864, 1041, 410, 1087, 437, 1233, 410, 1283, 1132, 1180, 530, 1724, 1178, 707, 1437, 1967, 1435, 1779, 1433, 1717, 707, 1779, 353, 2361
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2017

Keywords

Comments

This filter combines information about A101296(n) (prime signature of n, A046523), A003557(n) and A048250(n). - Antti Karttunen, Oct 08 2017

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A101296(n) + A291751(n))^2) - A101296(n) - 3*A291751(n)).

Extensions

Formula corrected by Antti Karttunen, Oct 08 2017

A319698 Filter sequence combining A003557(n) [n divided by largest squarefree divisor of n] with A319697(n) [sum of even squarefree divisors of n].

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 6, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 15, 16, 17, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 6, 19, 1, 27, 28, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 25, 6, 35, 1, 36, 1, 37, 1, 36, 1, 38, 1, 39, 15, 40, 1, 41, 1, 42, 43, 44, 1, 45, 1, 46, 1, 47, 1, 48, 1, 34, 1, 36, 1, 49, 1, 50, 6, 51, 1, 52, 1, 53, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A003557(n), A319697(n)].

Crossrefs

Cf also A291750, A291751.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);
    v319698 = rgs_transform(vector(up_to,n,[A003557(n),A319697(n)]));
    A319698(n) = v319698[n];

A291758 Compound filter (prime signature of n & sum of squarefree divisors of n): a(n) = P(A046523(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 12, 19, 23, 142, 38, 53, 25, 259, 80, 265, 107, 412, 412, 169, 173, 265, 212, 418, 672, 826, 302, 619, 40, 1087, 63, 607, 467, 5080, 530, 593, 1384, 1717, 1384, 1117, 743, 2086, 1836, 844, 905, 7780, 992, 1093, 607, 2932, 1178, 1759, 59, 418, 2932, 1390, 1487, 619, 2932, 1105, 3576, 4471, 1832, 8575, 1955, 5056, 915, 2209, 3922, 14908, 2348, 2092, 5056
Offset: 1

Views

Author

Antti Karttunen, Sep 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A048250(n))^2) - A046523(n) - 3*A048250(n)).

A326199 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 34, 35, 32, 36, 3, 37, 32, 38, 39, 40, 3, 41, 3, 42, 43, 44, 45, 46, 3, 47, 42, 46, 3, 48, 3, 49, 50, 51, 42, 52, 3, 53, 54, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 59, 66, 3, 67, 68, 69, 3, 70, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2019

Keywords

Comments

For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A294877(i) = A294877(j).

Crossrefs

Differs from A323401 for the first time at n = 382 where a(382) = 253, while A323401(382) = 140.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux326199(n) = if((n>2)&&isprime(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n)));
    v326199 = rgs_transform(vector(up_to,n,Aux326199(n)));
    A326199(n) = v326199[n];

A296087 Numbers n such that there is k < n for which A003557(k) = A003557(n), A048250(k) = A048250(n) and A173557(k) = A173557(n).

Original entry on oeis.org

15265, 27962, 30217, 30530, 45795, 50541, 54379, 54905, 57598, 60434, 61060, 64255, 66526, 72357, 72713, 89585, 90651, 91590, 101082, 101949, 108758, 109810, 120868, 122120, 128510, 136555, 137385, 137883, 138761, 144714, 145426, 149739, 151085, 152633, 161386, 163137, 164715, 166315, 179170, 181302, 181543, 182942
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2017

Keywords

Comments

Because Euler phi(n) = A000010(n) = A003557(n) * A173557(n), Dedekind psi(n) = A001615(n) = A003557(n) * A048250(n), and because also sigma(n) (A000203) can be computed from those three elements (see A291750), these numbers form also a subset of the positions of such duplicated occurrences of values computed for those functions. See for example A069822 and A296214.
a(11) = 61060 is the first term that is not squarefree.

Examples

			15265 is a term because A003557(15265) = 1 = A003557(15169), A048250(15265) = 19008 = A048250(15169), A173557(15265) = 11760 = A173557(15169).
27962 is a term because A003557(27962) = 1 = A003557(26355), A048250(27962) = 48384 = A048250(26355), A173557(27962) = 12000 = A173557(26355).
		

Crossrefs

Subsequence of A069822 and of A296214.

Programs

  • PARI
    search_up_to = (2^23);
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from Michel Marcus, Oct 31 2017
    Anotsubmitted1(n) = (1/2)*(2 + ((A003557(n)+A173557(n))^2) - A003557(n) - 3*A173557(n));
    Akaikki3(n) = (1/2)*(2 + ((A048250(n)+Anotsubmitted1(n))^2) - A048250(n) - 3*Anotsubmitted1(n));
    om = Map(); m = 0; i=0; for(n = 1, search_up_to, k = Akaikki3(n); if(!mapisdefined(om,k), mapput(om,k,n), i++; write("b296087.txt", i, " ", n)));

A332230 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)] for all other numbers, except f(2^k) = 0 for k >= 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 8, 9, 10, 11, 12, 13, 13, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 4, 29, 30, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 41, 46, 47, 48, 41, 49, 50, 51, 52, 53, 54, 55, 56, 4, 57, 58, 59, 60, 55, 58, 61, 62, 63, 64, 65, 66, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 76
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Comments

For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
a(i) = a(j) => A048250(i) = A048250(j),
a(i) = a(j) => A332455(i) = A332455(j),
a(i) = a(j) => A332459(i) = A332459(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A209229(n) = (n && !bitand(n,n-1));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux332230(n) = if((n>2)&&A209229(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n)));
    v332230 = rgs_transform(vector(up_to,n,Aux332230(n)));
    A332230(n) = v332230[n];
Previous Showing 11-19 of 19 results.