cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A318441 a(n) = Sum_{d|n} [moebius(n/d) > 0]*A033879(d).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 5, 3, 10, -3, 12, 5, 7, 1, 16, -1, 18, -1, 11, 9, 22, -11, 19, 11, 14, 1, 28, -5, 30, 1, 19, 15, 23, -19, 36, 17, 23, -9, 40, -3, 42, 5, 14, 21, 46, -27, 41, 11, 31, 7, 52, -7, 39, -7, 35, 27, 58, -45, 60, 29, 24, 1, 47, 1, 66, 11, 43, 7, 70, -55, 72, 35, 30, 13, 59, 3, 78, -25, 41, 39, 82, -51, 63, 41, 55, -3, 88
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

  • PARI
    A318441(n) = sumdiv(n,d,(1==moebius(n/d))*(d+d-sigma(d)));

Formula

a(n) = Sum_{d|n} [A008683(n/d) == 1]*A033879(d).
a(n) = A291784(n) - A318325(n).
A083254(n) = a(n) - A318442(n).

A292786 a(n) = psi(n) - phi(n).

Original entry on oeis.org

0, 2, 2, 4, 2, 10, 2, 8, 6, 14, 2, 20, 2, 18, 16, 16, 2, 30, 2, 28, 20, 26, 2, 40, 10, 30, 18, 36, 2, 64, 2, 32, 28, 38, 24, 60, 2, 42, 32, 56, 2, 84, 2, 52, 48, 50, 2, 80, 14, 70, 40, 60, 2, 90, 32, 72, 44, 62, 2, 128, 2, 66, 60, 64, 36, 124, 2, 76, 52, 120, 2, 120, 2, 78, 80, 84, 36, 144
Offset: 1

Views

Author

Altug Alkan, Sep 23 2017

Keywords

Comments

Even numbers that are not the terms of this sequence are 12, 102, 114, 130, ...

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n Sum[ MoebiusMu[d]^2/d, {d, Divisors@ n}]]; Array[psi@# - EulerPhi@# &, 87] (* Robert G. Wilson v, Sep 23 2017 *)
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    a(n) = a001615(n) - eulerphi(n); \\ after Charles R Greathouse IV at A001615

Formula

a(n) = A001615(n) - A000010(n).
a(n) = 2 iff n is prime.
a(n) = 2*A069359(n) iff n is in A070915.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 9/(2*Pi^2) = 0.455945... (A088245). - Amiram Eldar, Dec 05 2023

A319681 Restricted growth sequence transform of A319680.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 53, 54, 55, 49, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Antti Karttunen, Sep 29 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A291784(i) = A291784(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319680(n) = { my(m=1); fordiv(n,d,if((1==moebius(n/d)), m *= A019565(d))); m; };
    v319681 = rgs_transform(vector(up_to,n,A319680(n)));
    A319681(n) = v319681[n];

A306369 a(n) = A000010(n) + A069359(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, 14, 13, 15, 16, 16, 17, 21, 19, 22, 22, 23, 23, 28, 25, 27, 27, 30, 29, 39, 31, 32, 34, 35, 36, 42, 37, 39, 40, 44, 41, 53, 43, 46, 48, 47, 47, 56, 49, 55, 52, 54, 53, 63, 56, 60, 58, 59, 59, 78, 61, 63, 66, 64, 66, 81, 67, 70, 70, 83, 71, 84, 73, 75, 80
Offset: 1

Views

Author

Torlach Rush, Feb 10 2019

Keywords

Comments

a(n) = A291784(n) iff A001221(n) < 3, that is, iff n is in A070915.

Examples

			1 is a term because A000010(1) + A069359(1) = 1 + 0.
7 is a term because A000010(6) + A069359(6) = 2 + 5 = 7 = 6 + 1 = A000010(7) + A069359(7).
		

Crossrefs

Programs

  • Mathematica
    A069359[n_] := n * Plus @@ (1/FactorInteger[n][[;; , 1]]); A069359[1] = 0; a[n_] := A069359[n] + EulerPhi[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    a(n) = eulerphi(n) + n*sumdiv(n, d, isprime(d)/d); \\ Michel Marcus, Feb 12 2019

Formula

a(n) = A000010(n) + A069359(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A059956 + A085548 = 1.0601745... . - Amiram Eldar, Dec 05 2023
Previous Showing 11-14 of 14 results.