cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A373414 Sum of the n-th maximal run of nonsquarefree numbers differing by one.

Original entry on oeis.org

4, 17, 12, 16, 18, 20, 49, 55, 32, 36, 40, 89, 147, 52, 54, 56, 60, 127, 68, 72, 151, 161, 84, 88, 90, 92, 96, 297, 104, 108, 112, 233, 241, 375, 128, 132, 271, 140, 144, 295, 150, 305, 156, 160, 162, 164, 337, 343, 351, 180, 184, 377, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

The length of this run is given by A053797.
A run of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by one.

Examples

			Row-sums of:
   4
   8   9
  12
  16
  18
  20
  24  25
  27  28
  32
  36
  40
  44  45
  48  49  50
		

Crossrefs

The partial sums are a subset of A329472.
Functional neighbors: A053797, A053806, A054265, A373406, A373412, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1==#2&]//Most

A375710 Numbers k such that A013929(k+1) - A013929(k) = 2. In other words, the k-th nonsquarefree number is 2 less than the next nonsquarefree number.

Original entry on oeis.org

5, 6, 9, 19, 20, 21, 33, 34, 36, 49, 57, 58, 62, 63, 66, 76, 77, 88, 89, 91, 96, 97, 103, 104, 113, 114, 118, 119, 130, 131, 132, 136, 142, 149, 150, 161, 162, 174, 175, 187, 188, 189, 190, 201, 202, 206, 215, 217, 218, 225, 226, 231, 232, 245, 246, 249, 253
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by 2 after the fifth and sixth terms.
		

Crossrefs

Positions of 2's in A078147.
For prime numbers we have A029707.
For nonprime numbers we appear to have A014689.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[1000], !SquareFreeQ[#]&]],2]

Formula

Complement of A375709 U A375711 U A375712.

A375711 Numbers k such that A013929(k+1) - A013929(k) = 3. In other words, the k-th nonsquarefree number is 3 less than the next nonsquarefree number.

Original entry on oeis.org

3, 16, 23, 27, 31, 44, 46, 51, 55, 60, 68, 74, 79, 86, 95, 101, 105, 107, 112, 116, 121, 126, 129, 146, 147, 152, 159, 164, 167, 172, 177, 182, 185, 191, 195, 199, 204, 209, 220, 223, 229, 234, 237, 242, 244, 257, 262, 270, 275, 285, 286, 291, 299, 305, 312
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by 3 after the third term.
		

Crossrefs

Positions of 3's in A078147.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[1000],!SquareFreeQ[#]&]],3]

Formula

Complement of A375709 U A375710 U A375712.

A375712 Numbers k such that A013929(k+1) - A013929(k) = 4. In other words, the k-th nonsquarefree number is 4 less than the next nonsquarefree number.

Original entry on oeis.org

1, 4, 7, 11, 12, 13, 14, 22, 25, 26, 29, 32, 35, 39, 40, 41, 42, 50, 53, 54, 61, 64, 70, 71, 72, 75, 78, 81, 82, 83, 84, 87, 90, 98, 99, 102, 109, 110, 117, 120, 123, 124, 127, 135, 139, 140, 144, 151, 154, 155, 156, 157, 160, 163, 168, 169, 170, 173, 176, 179
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by 4 after the first, fourth, and seventh terms.
		

Crossrefs

For prime numbers we have A029709.
Positions of 4's in A078147.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!SquareFreeQ[#]&]],4]

Formula

Complement of A375709 U A375710 U A375711.

A373574 Numbers k such that the k-th maximal antirun of nonsquarefree numbers has length different from all prior maximal antiruns. Sorted positions of first appearances in A373409.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 18, 52, 678
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A373573.
An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Is this sequence finite? Are there only 9 terms?

Examples

			The maximal antiruns of nonsquarefree numbers begin:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
The a(n)-th rows are:
     4    8
     9   12   16   18   20   24
    28   32   36   40   44
    49
    64   68   72   75
    81   84   88   90   92   96   98
   148  150  152
   477  480  484  486  488  490  492  495
  6345 6348 6350 6352 6354 6356 6358 6360 6363
		

Crossrefs

For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For squarefree antiruns: A373200, firsts of A373127, unsorted A373128.
For composite runs we have A373400, firsts of A176246, unsorted A073051.
For prime antiruns we have A373402, firsts of A027833, unsorted A373401.
For composite antiruns we have the triple (1,2,7), firsts of A373403.
Sorted positions of first appearances in A373409.
The unsorted version is A373573.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[100000],!SquareFreeQ[#]&],#1+1!=#2&];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A375930 Numbers k such that A005117(k+1) - A005117(k) > 1. In other words, the k-th squarefree number is more than 1 less than the next.

Original entry on oeis.org

3, 6, 8, 11, 12, 13, 16, 17, 20, 23, 26, 29, 31, 32, 33, 34, 37, 39, 42, 45, 47, 50, 52, 55, 56, 57, 60, 61, 64, 67, 70, 73, 75, 77, 78, 81, 83, 86, 89, 91, 92, 93, 95, 98, 99, 100, 103, 104, 106, 109, 112, 115, 117, 120, 121, 122, 125, 127, 130, 133, 136, 139
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p^2-1)) = 1 - A065469 = 0.46928817... . - Amiram Eldar, Sep 15 2024

Examples

			The squarefree numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ... which first increase by more than one after positions 3, 6, 8, 11, ...
		

Crossrefs

For nonprime numbers: A014689, complement A375926, differences A373403.
For composite numbers: A065890 shifted, complement A375929.
Positions of terms > 1 in A076259.
First differences are A120992, complement A373127.
The complement is A375927.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],SquareFreeQ[#]&]],_?(#>1&)]
  • PARI
    lista(kmax) = {my(is1 = 1, is2, c = 1); for(k = 2, kmax, is2 = issquarefree(k); if(is2, c++); if(is1 && !is2, print1(c, ", ")); is1 = is2);} \\ Amiram Eldar, Sep 15 2024

A376164 Maximum of the n-th maximal run of nonsquarefree numbers (increasing by 1 at a time).

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 32, 36, 40, 45, 50, 52, 54, 56, 60, 64, 68, 72, 76, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 117, 121, 126, 128, 132, 136, 140, 144, 148, 150, 153, 156, 160, 162, 164, 169, 172, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2024

Keywords

Examples

			The maximal runs of nonsquarefree numbers begin:
       4
     8   9
      12
      16
      18
      20
    24  25
    27  28
      32
      36
      40
    44  45
  48  49  50
		

Crossrefs

For length instead of maximum we have A053797 (firsts A373199).
For lengths of anti-runs we have A373409 (firsts A373573).
For sum instead of maximum we have A373414, anti A373412.
For minimum instead of maximum we have A053806, anti A373410.
For anti-runs instead of runs we have A068781.
For squarefree instead of nonsquarefree we have A373415, anti A007674.
For nonprime instead of nonsquarefree we have A006093 with 2 removed.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147, sums A329472.
A061398 counts squarefree numbers between primes, nonsquarefree A061399.
A120992 gives squarefree run-lengths, anti A373127 (firsts A373128).
A373413 adds up each maximal run of squarefree numbers, min A072284.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Max/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1==#2&]//Most
Previous Showing 11-17 of 17 results.