A294420
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 14, 31, 62, 113, 198, 337, 564, 933, 1532, 2503, 4078, 6628, 10756, 17437, 28249, 45745, 74056, 119866, 193990, 313927, 507991, 821995, 1330066, 2152144, 3482296, 5634529, 9116919, 14751546, 23868566, 38620216, 62488889, 101109215, 163598217, 264707548
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) + b(n-2) = 14
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294420 *)
Table[b[n], {n, 0, 10}]
A294421
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 10, 19, 36, 63, 108, 181, 302, 496, 812, 1323, 2151, 3491, 5660, 9170, 14852, 24044, 38919, 62987, 101931, 164944, 266902, 431874, 698805, 1130709, 1829545, 2960286, 4789864, 7750184, 12540083, 20290303, 32830425, 53120767, 85951232, 139072040
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) - b(0) = 10
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] - b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294421 *)
Table[b[n], {n, 0, 10}]
A294422
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 7, 12, 21, 36, 59, 97, 158, 258, 418, 678, 1098, 1778, 2878, 4658, 7538, 12199, 19739, 31940, 51681, 83623, 135306, 218931, 354239, 573172, 927413, 1500587, 2428002, 3928591, 6356595, 10285189, 16641786, 26926977, 43568765, 70495744
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) - b(0) + 1 = 7
Complement: (b(n)) = (2, 4, 5, 6, 8, 9, 11, 13, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294422 *)
Table[b[n], {n, 0, 10}]
A294423
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 8, 15, 28, 49, 85, 142, 236, 388, 635, 1035, 1684, 2733, 4432, 7181, 11630, 18829, 30478, 49327, 79826, 129175, 209024, 338223, 547273, 885522, 1432822, 2318372, 3751223, 6069625, 9820879, 15890536, 25711448, 41602018, 67313501, 108915555, 176229093
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) - b(0) + 2 = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 11, 13, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] + n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294423 *)
Table[b[n], {n, 0, 10}]
A294424
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 5, 9, 14, 23, 38, 61, 99, 160, 260, 420, 680, 1100, 1780, 2880, 4660, 7540, 12201, 19741, 31942, 51683, 83625, 135308, 218933, 354241, 573174, 927415, 1500589, 2428004, 3928593, 6356597, 10285191, 16641788, 26926979, 43568767, 70495746, 114064513
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) - b(0) - 1 = 5
Complement: (b(n)) = (2, 4, 6, 7, 9, 11, 12, 13, 15,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294424 *)
Table[b[n], {n, 0, 10}]
A294425
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 9, 17, 32, 56, 96, 163, 270, 445, 728, 1187, 1930, 3133, 5082, 8234, 13336, 21591, 34949, 56563, 91536, 148124, 239686, 387837, 627551, 1015417, 1642998, 2658446, 4301478, 6959958, 11261471, 18221465, 29482973, 47704476, 77187488, 124892004, 202079533
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) - b(0) - 1 = 9
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2*b[n - 1] - b[n - 2] - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294425 *)
Table[b[n], {n, 0, 10}]
A294426
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 8, 15, 28, 49, 86, 144, 240, 395, 647, 1055, 1718, 2789, 4524, 7331, 11874, 19225, 31120, 50367, 81510, 131901, 213436, 345363, 558828, 904220, 1463078, 2367329, 3830439, 6197801, 10028274, 16226110, 26254420, 42480567, 68735025, 111215631, 179950696
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) - b(0) - 2 = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2*b[n - 1] - b[n - 2] - 2;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294426 *)
Table[b[n], {n, 0, 10}]
Comments