cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A294545 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 6, 12, 24, 43, 75, 127, 212, 351, 576, 941, 1532, 2489, 4038, 6545, 10602, 17167, 27790, 44979, 72793, 117797, 190616, 308440, 499084, 807553, 1306667, 2114251, 3420950, 5535234, 8956218, 14491487, 23447741, 37939265, 61387044, 99326348
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) -1 = 6.
Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294545 *)
    Table[b[n], {n, 0, 10}]

A294547 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 11, 24, 49, 90, 159, 272, 457, 759, 1249, 2044, 3332, 5418, 8795, 14261, 23107, 37422, 60586, 98068, 158717, 256852, 415639, 672564, 1088279, 1760922, 2849283, 4610290, 7459661, 12070042, 19529797, 31599936, 51129833, 82729872, 133859811, 216589792
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 4 = 11.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2n;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294547 *)
    Table[b[n], {n, 0, 10}]

A294548 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 8, 17, 34, 62, 110, 188, 316, 524, 862, 1410, 2298, 3736, 6065, 9834, 15934, 25805, 41778, 67624, 109445, 177114, 286606, 463769, 750426, 1214248, 1964729, 3179034, 5143822, 8322917, 13466803, 21789786, 35256657, 57046513, 92303242, 149349829
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 1 = 8.
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 18, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n - 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294548 *)
    Table[b[n], {n, 0, 10}]

A294550 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 10, 21, 42, 76, 133, 226, 379, 628, 1032, 1687, 2748, 4466, 7247, 11748, 19032, 30819, 49893, 80757, 130697, 211503, 342251, 553807, 896113, 1449977, 2346149, 3796187, 6142399, 9938651, 16081117, 26019837, 42101025, 68120935, 110222035, 178343047
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + b(0) = 10.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294550 *)
    Table[b[n], {n, 0, 10}]

A294551 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 11, 23, 46, 83, 145, 246, 411, 680, 1117, 1825, 2972, 4829, 7835, 12700, 20573, 33313, 53928, 87285, 141260, 228595, 369907, 598556, 968519, 1567133, 2535712, 4102907, 6638683, 10741656, 17380407, 28122133, 45502612, 73624819, 119127507, 192752404
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294551 *)
    Table[b[n], {n, 0, 10}]

A294554 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 12, 25, 50, 90, 157, 266, 444, 733, 1203, 1965, 3199, 5197, 8431, 13665, 22135, 35841, 58019, 93905, 151971, 245925, 397948, 643928, 1041933, 1685920, 2727914, 4413897, 7141876, 11555840, 18697785, 30253696, 48951554, 79205325, 128156956, 207362360
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(1) + b(0) + 2 = 12
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 2;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294554 *)
    Table[b[n], {n, 0, 10}]

Extensions

Definition corrected by Georg Fischer, Sep 27 2020

A294555 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 3, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 13, 27, 54, 97, 169, 286, 477, 787, 1290, 2106, 3428, 5568, 9032, 14638, 23710, 38390, 62144, 100580, 162772, 263402, 426226, 689682, 1115965, 1805707, 2921734, 4727505, 7649305, 12376878, 20026253, 32403203, 52429530, 84832809, 137262417, 222095306
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(1) + b(0) + 3 = 13
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 3;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294555 *)
    Table[b[n], {n, 0, 10}]

Extensions

Definition corrected by Georg Fischer, Sep 27 2020

A294559 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 13, 28, 57, 104, 183, 312, 523, 866, 1423, 2327, 3793, 6166, 10008, 16226, 26289, 42573, 68923, 111560, 180550, 292180, 472803, 765059, 1237941, 2003083, 3241112, 5244286, 8485492, 13729875, 22215467, 35945445, 58161018, 94106572, 152267702, 246374389
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(1) + 2*b(0)  = 13
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2 b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294559 *)
    Table[b[n], {n, 0, 10}]

A294560 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 17, 37, 76, 139, 245, 418, 701, 1161, 1908, 3119, 5081, 8258, 13401, 21727, 35202, 57007, 92291, 149384, 241765, 391243, 633106, 1024451, 1657663, 2682224, 4340001, 7022343, 11362466, 18384935, 29747531, 48132600, 77880269, 126013011, 203893428
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(0) + a(1) + 2*b(0) + 2*b(1) = 17
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + 2 b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294560 *)
    Table[b[n], {n, 0, 10}]

A294561 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 14, 30, 61, 111, 195, 332, 556, 920, 1511, 2469, 4023, 6539, 10612, 17204, 27872, 45135, 73069, 118269, 191406, 309746, 501226, 811049, 1312355, 2123487, 3435928, 5559506, 8995529, 14555133, 23550763, 38106000, 61656870, 99762980, 161419963, 261183059
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + 2*b(1) + b(0) = 14
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294561 *)
    Table[b[n], {n, 0, 10}]
Previous Showing 21-30 of 34 results. Next