cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A295960 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 8, 16, 30, 54, 93, 157, 261, 430, 704, 1148, 1868, 3033, 4919, 7971, 12910, 20902, 33834, 54759, 88617, 143401, 232044, 375472, 607544, 983046, 1590621, 2573699, 4164353, 6738086, 10902474, 17640596, 28543107, 46183741, 74726887, 120910668, 195637596
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) - 1 = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1;
    j = 1; While[j < 6, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A295960 *)

A296220 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 10, 13, 16, 19, 22, 25, 29, 34, 38, 43, 47, 52, 56, 61, 65, 70, 74, 79, 82, 86, 91, 94, 97, 101, 106, 109, 113, 118, 121, 124, 128, 133, 136, 140, 145, 148, 151, 155, 160, 163, 167, 172, 175, 178, 182, 187, 190, 194, 199, 202, 205, 209, 214, 217, 221
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295862 for a guide to related sequences.
P. Majer proved that a(n)/n -> 4, that (a(n) - 4*n) is unbounded, and that a( ) is not a linear recurrence sequence; see the Math Overflow link and A297964. - Clark Kimberling, Feb 10 2018

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4;
a(2) = a(0)*b(1) + a(1)*b(0) = 10.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, ...).
		

Crossrefs

Cf. A296000.

Programs

  • Mathematica
    mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &];
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = a[0]*b[n - 1] + a[1]*b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    u = Table[a[n], {n, 0, 500}];  (* A296220 *)
    Table[b[n], {n, 0, 20}]

A296215 Solution of the complementary equation a(n) = a(1)*b(n-2) + a(2)*b(n-3) + ... + a(n-1)*b(0), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 6, 24, 87, 321, 1176, 4314, 15822, 58032, 212847, 780672, 2863317, 10501959, 38518662, 141277197, 518170812, 1900526031, 6970672818, 25566752964, 93772706622, 343935755925, 1261473710904, 4626782461218, 16969926331719, 62241612204120, 228287277978756
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295862 for a guide to related sequences.

Examples

			a(0) =1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(1)*b(0) = 6
Complement: (b(n)) = (2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 1, n - 1}];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    u = Table[a[n], {n, 0, 200}];  (* A296215 *)
    Table[b[n], {n, 0, 20}]
    N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
    RealDigits[Last[t], 10][[1]] (* A296216 *)

A296217 Solution of the complementary equation a(n) = a(1)*b(n-2) + a(2)*b(n-3) + ... + a(n-1)*b(0), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 6, 26, 112, 484, 2088, 9008, 38862, 167658, 723308, 3120486, 13462360, 58079138, 250564260, 1080981064, 4663554414, 20119445656, 86799050160, 374467330636, 1615522076050, 6969664279584, 30068434774274, 129720849313094, 559639996988064, 2414391579204576
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295862 for a guide to related sequences.

Examples

			a(0) =1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 4
a(2) = a(1)*b(0) = 2
Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 1, n - 1}];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    u = Table[a[n], {n, 0, 200}];  (* A296217 *)
    Table[b[n], {n, 0, 20}]
    N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
    RealDigits[Last[t], 10][[1]] (* A296218 *)

A295954 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 12, 23, 43, 75, 128, 214, 354, 582, 951, 1549, 2517, 4084, 6620, 10724, 17365, 28111, 45499, 73635, 119160, 192822, 312010, 504861, 816901, 1321793, 2138726, 3460552, 5599312, 9059899, 14659247, 23719183, 38378468, 62097690, 100476198, 162573929
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) + 1 = 12
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;
    j = 1; While[j < 6, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A295954 *)

A295955 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

3, 4, 13, 24, 45, 78, 133, 222, 367, 602, 984, 1602, 2603, 4223, 6845, 11088, 17954, 29064, 47041, 76129, 123196, 199352, 322576, 521957, 844563, 1366551, 2211146, 3577730, 5788910, 9366675, 15155621, 24522333, 39677992, 64200364, 103878396, 168078801
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.

Examples

			a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) + 1 = 13
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;
    j = 1; While[j < 6, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A295955 *)

Extensions

Definition corrected by Georg Fischer, Sep 27 2020

A295956 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 9, 18, 35, 62, 108, 182, 303, 499, 817, 1332, 2166, 3516, 5702, 9239, 14963, 24225, 39212, 63462, 102700, 166189, 268917, 435135, 704082, 1139248, 1843362, 2982643, 4826039, 7808717, 12634793, 20443548, 33078380, 53521968, 86600389, 140122399
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) + 1 = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;
    j = 1; While[j < 6, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A295956 *)

A295957 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 11, 22, 41, 72, 123, 206, 342, 562, 919, 1497, 2433, 3948, 6400, 10368, 16789, 27179, 43992, 71196, 115214, 186437, 301679, 488145, 789854, 1278030, 2067916, 3345979, 5413929, 8759943, 14173908, 22933888, 37107834, 60041761, 97149635, 157191437
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) + 1 = 11
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;
    j = 1; While[j < 6, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A295957 *)

A295958 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 11, 21, 40, 70, 120, 201, 334, 549, 898, 1463, 2378, 3859, 6256, 10135, 16412, 26570, 43006, 69601, 112633, 182261, 294922, 477212, 772164, 1249407, 2021603, 3271043, 5292680, 8563758, 13856474, 22420269, 36276781, 58697089, 94973910, 153671041
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) + 1 = 11
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;
    j = 1; While[j < 6, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A295958 *)

A295959 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 1, a(1) = 5, b(0) = 2, b(1) = 3, b(2) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 5, 11, 23, 42, 74, 126, 211, 350, 575, 940, 1531, 2488, 4037, 6544, 10601, 17166, 27789, 44978, 72792, 117796, 190615, 308439, 499083, 807552, 1306666, 2114250, 3420949, 5535233, 8956217, 14491486, 23447740, 37939264, 61387043, 99326347, 160713431
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 5, b(0) = 2, b(1) = 3, b(2) = 4
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) + 1 = 11
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 5; b[0] = 2; b[1] = 3; b[2] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;
    j = 1; While[j < 6, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A295959 *)
Previous Showing 11-20 of 31 results. Next