A295961
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 10, 19, 35, 61, 104, 175, 290, 477, 780, 1271, 2066, 3353, 5436, 8808, 14264, 23093, 37379, 60495, 97898, 158418, 256342, 414787, 671157, 1085973, 1757160, 2843164, 4600356, 7443553, 12043944, 19487533, 31531514, 51019085, 82550638, 133569763
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) - 1 = 10
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1;
j = 1; While[j < 6, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295961 *)
A295962
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
3, 4, 11, 20, 37, 64, 109, 182, 302, 496, 811, 1321, 2147, 3484, 5648, 9150, 14818, 23989, 38829, 62841, 101694, 164560, 266280, 430867, 697175, 1128071, 1825276, 2953378, 4778686, 7732097, 12510817, 20242949, 32753803, 52996790, 85750632, 138747462
Offset: 0
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) - 1 = 11
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, ...)
-
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1;
j = 1; While[j < 6, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295962 *)
A295963
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 7, 14, 28, 50, 87, 147, 245, 404, 663, 1082, 1761, 2860, 4639, 7518, 12177, 19716, 31915, 51654, 83593, 135272, 218891, 354191, 573111, 927332, 1500474, 2427838, 3928345, 6356217, 10284597, 16640850, 26925484, 43566372, 70491895, 114058307, 184550243
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) - 1 = 7
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, ...)
-
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1;
j = 1; While[j < 6, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295963 *)
A295964
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 9, 18, 33, 58, 100, 168, 279, 459, 751, 1224, 1990, 3230, 5238, 8487, 13745, 22253, 36020, 58296, 94340, 152661, 247027, 399715, 646770, 1046514, 1693314, 2739859, 4433206, 7173099, 11606340, 18779475, 30385852, 49165365, 79551256, 128716661, 208267958
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) - 1 = 9
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1;
j = 1; While[j < 6, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295964 *)
A295965
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 9, 17, 32, 56, 97, 163, 271, 446, 730, 1190, 1935, 3142, 5095, 8256, 13371, 21648, 35041, 56712, 91777, 148514, 240317, 388858, 629203, 1018090, 1647323, 2665445, 4312801, 6978280, 11291116, 18269432, 29560585, 47830055, 77390679, 125220774, 202611494
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) - 1 = 9
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1;
j = 1; While[j < 6, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295965 *)
A295966
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 5, b(0) = 2, b(1) = 3, b(2) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 5, 9, 19, 34, 60, 103, 173, 287, 472, 772, 1258, 2045, 3319, 5381, 8719, 14120, 22860, 37002, 59885, 96911, 156821, 253758, 410606, 664392, 1075027, 1739449, 2814507, 4553988, 7368529, 11922552, 19291117, 31213706, 50504861, 81718606, 132223507, 213942154
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) - 1 = 9
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
-
a[0] = 1; a[1] = 5; b[0] = 2; b[1] = 3; b[2] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1;
j = 1; While[j < 6, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295966 *)
A296221
Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 11, 40, 146, 533, 1946, 7105, 25941, 94714, 345812, 1262601, 4609907, 16831321, 61453163, 224372837, 819212023, 2991040928, 10920647625, 39872588647, 145579582824, 531528442330, 1940673819263, 7085631873740, 25870488153041, 94456241758347
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(0)*b(1) + a(1)*b(0) + 1 = 11
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, ...)
-
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &];
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
u = Table[a[n], {n, 0, 200}]; (* A296221 *)
Table[b[n], {n, 0, 20}]
t = N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
d = RealDigits[Last[t], 10][[1]] (* A296222 *)
A296223
Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 9, 34, 124, 453, 1654, 6040, 22055, 80532, 294058, 1073735, 3920679, 14316124, 52274468, 190877084, 696976221, 2544966858, 9292793804, 33932079081, 123900951107, 452416889887, 1651973131976, 6032080786047, 22025781112962, 80425818360771
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(0)*b(1) + a(1)*b(0) - 1 = 9
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...)
-
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &];
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}] - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
u = Table[a[n], {n, 0, 200}] (* A296223 *)
Table[b[n], {n, 0, 20}]
N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
RealDigits[Last[t], 10][[1]] (* A296224 *)
A296225
Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) + n, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 12, 44, 161, 588, 2147, 7839, 28621, 104498, 381533, 1393015, 5086038, 18569636, 67799608, 247543185, 903805055, 3299883119, 12048205018, 43989207775, 160609019998, 586399678681, 2141004179974, 7817021504815, 28540731390577, 104205079621096
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
a(2) = a(0)*b(1) + a(1)*b(0) + 2 = 12
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
-
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &];
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = n + Sum[a[k]*b[n - k - 1], {k, 0, n - 1}];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 200}] (* A296225 *)
Table[b[n], {n, 0, 20}]
N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
RealDigits[Last[t], 10][[1]] (* A296226 *)
A296227
Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) - n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 8, 34, 146, 628, 2703, 11632, 50057, 215415, 927016, 3989317, 17167612, 73879038, 317930779, 1368182139, 5887829959, 25337665679, 109038016813, 469233798454, 2019298993572, 8689843823858, 37395841786394, 160929127296116, 692541811472532
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
a(2) = a(0)*b(1) + a(1)*b(0) - 2 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
-
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &];
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = - n + Sum[a[k]*b[n - k - 1], {k, 0, n - 1}];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 200}] (* A296227 *)
Table[b[n], {n, 0, 20}]
N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
RealDigits[Last[t], 10][[1]] (* A296228 *)
Comments