cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A296276 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 21, 55, 118, 229, 419, 738, 1267, 2137, 3560, 5879, 9649, 15768, 25689, 41763, 67794, 109937, 178171, 288614, 467337, 756551, 1224538, 1981791, 3207085, 5189688, 8397643, 13588261, 21986896, 35576213, 57564231, 93141634, 150707125, 243850091, 394558622
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + b(1)*b(2) = 21
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296276 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296277 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

3, 4, 17, 51, 110, 217, 399, 706, 1215, 2053, 3424, 5659, 9293, 15192, 24773, 40307, 65460, 106187, 172109, 278802, 451463, 730865, 1182978, 1914545, 3098279, 5013636, 8112785, 13127351, 21241128, 34369535, 55611785, 89982510, 145595555, 235579397, 381176358
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5
a(2) = a(0) + a(1) + b(1)*b(2) = 17
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296277 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296279 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 44, 167, 421, 924, 1849, 3493, 6332, 11145, 19193, 32522, 54445, 90327, 148852, 244075, 398741, 649656, 1056377, 1715273, 2782276, 4509693, 7305769, 11831062, 19154381, 31005099, 50181404, 81210863, 131419237, 212659860, 344111833, 556807597, 900958700
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 44
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296279 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296280 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 35, 129, 374, 839, 1717, 3276, 5983, 10579, 18278, 31041, 52049, 86450, 142579, 233925, 382318, 623083, 1013381, 1645704, 2669711, 4327559, 7011070, 11354229, 18382849, 29756734, 48161507, 77942601, 126131078, 204103439, 330267253, 534406596, 864714241
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 35
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296280 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296281 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 25, 148, 383, 867, 1754, 3341, 6085, 10746, 18547, 31477, 52754, 87591, 144425, 236912, 387151, 630903, 1026034, 1666177, 2702837, 4381158, 7098347, 11496353, 18614356, 30132633, 48771349, 78930952, 127732061, 206695749, 334463714, 541198733, 875705287
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 25
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296281 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296282 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 21, 115, 346, 797, 1647, 3164, 5801, 10285, 17802, 30271, 50803, 84434, 139317, 228647, 373778, 609265, 991403, 1610788, 2614335, 4238923, 6868858, 11125331, 18013845, 29161100, 47199305, 76387375, 123616440, 200036551, 323688895, 523764716, 847496451
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 25
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296282 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296283 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

3, 4, 17, 81, 308, 725, 1537, 2982, 5509, 9811, 17036, 29031, 48797, 81188, 134305, 220965, 362110, 591055, 962405, 1564086, 2538635, 4116521, 6670756, 10804827, 17495239, 28321990, 45841589, 74190549, 120061898, 194285183, 314382985, 508707438, 823133263
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 17
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296283 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296285 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 11, 25, 56, 111, 209, 376, 657, 1123, 1900, 3166, 5234, 8595, 14053, 22903, 37244, 60470, 98074, 158943, 257457, 416883, 674868, 1092349, 1767865, 2860914, 4629533, 7491257, 12121658, 19613843, 31736491, 51351388, 83088999, 134441575, 217531832
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 4, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(0) = 11
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296285 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296286 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 8, 23, 51, 104, 197, 364, 641, 1104, 1865, 3112, 5145, 8452, 13821, 22528, 36637, 59488, 96485, 156372, 253297, 410173, 664020, 1074791, 1739459, 2814950, 4555163, 7370923, 11926954, 19298805, 31226749, 50526608, 81754477, 132282273, 214038008
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(0) = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296286 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296287 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 2, a(1) = 3, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 7, 22, 49, 101, 198, 362, 640, 1101, 1861, 3105, 5134, 8434, 13792, 22481, 36561, 59365, 96286, 156050, 252796, 409350, 662696, 1072644, 1735988, 2809332, 4546074, 7356216, 11903158, 19260302, 31164450, 50425806, 81591376, 132018370, 213611004
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(0) = 7
Complement: (b(n)) = (1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296287 *)
    Table[b[n], {n, 0, 20}]    (* complement *)
Previous Showing 41-50 of 63 results. Next