A296276
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 21, 55, 118, 229, 419, 738, 1267, 2137, 3560, 5879, 9649, 15768, 25689, 41763, 67794, 109937, 178171, 288614, 467337, 756551, 1224538, 1981791, 3207085, 5189688, 8397643, 13588261, 21986896, 35576213, 57564231, 93141634, 150707125, 243850091, 394558622
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + b(1)*b(2) = 21
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296276 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296277
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
3, 4, 17, 51, 110, 217, 399, 706, 1215, 2053, 3424, 5659, 9293, 15192, 24773, 40307, 65460, 106187, 172109, 278802, 451463, 730865, 1182978, 1914545, 3098279, 5013636, 8112785, 13127351, 21241128, 34369535, 55611785, 89982510, 145595555, 235579397, 381176358
Offset: 0
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5
a(2) = a(0) + a(1) + b(1)*b(2) = 17
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, ...)
-
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296277 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296279
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 44, 167, 421, 924, 1849, 3493, 6332, 11145, 19193, 32522, 54445, 90327, 148852, 244075, 398741, 649656, 1056377, 1715273, 2782276, 4509693, 7305769, 11831062, 19154381, 31005099, 50181404, 81210863, 131419237, 212659860, 344111833, 556807597, 900958700
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 44
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296279 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296280
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 35, 129, 374, 839, 1717, 3276, 5983, 10579, 18278, 31041, 52049, 86450, 142579, 233925, 382318, 623083, 1013381, 1645704, 2669711, 4327559, 7011070, 11354229, 18382849, 29756734, 48161507, 77942601, 126131078, 204103439, 330267253, 534406596, 864714241
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 35
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296280 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296281
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 25, 148, 383, 867, 1754, 3341, 6085, 10746, 18547, 31477, 52754, 87591, 144425, 236912, 387151, 630903, 1026034, 1666177, 2702837, 4381158, 7098347, 11496353, 18614356, 30132633, 48771349, 78930952, 127732061, 206695749, 334463714, 541198733, 875705287
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 25
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296281 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296282
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 21, 115, 346, 797, 1647, 3164, 5801, 10285, 17802, 30271, 50803, 84434, 139317, 228647, 373778, 609265, 991403, 1610788, 2614335, 4238923, 6868858, 11125331, 18013845, 29161100, 47199305, 76387375, 123616440, 200036551, 323688895, 523764716, 847496451
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 25
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296282 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296283
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
3, 4, 17, 81, 308, 725, 1537, 2982, 5509, 9811, 17036, 29031, 48797, 81188, 134305, 220965, 362110, 591055, 962405, 1564086, 2538635, 4116521, 6670756, 10804827, 17495239, 28321990, 45841589, 74190549, 120061898, 194285183, 314382985, 508707438, 823133263
Offset: 0
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 17
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, ...)
-
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296283 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296285
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 11, 25, 56, 111, 209, 376, 657, 1123, 1900, 3166, 5234, 8595, 14053, 22903, 37244, 60470, 98074, 158943, 257457, 416883, 674868, 1092349, 1767865, 2860914, 4629533, 7491257, 12121658, 19613843, 31736491, 51351388, 83088999, 134441575, 217531832
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 4, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(0) = 11
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...)
-
a[0] = 1; a[1] = 2; b[0] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296285 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296286
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 8, 23, 51, 104, 197, 364, 641, 1104, 1865, 3112, 5145, 8452, 13821, 22528, 36637, 59488, 96485, 156372, 253297, 410173, 664020, 1074791, 1739459, 2814950, 4555163, 7370923, 11926954, 19298805, 31226749, 50526608, 81754477, 132282273, 214038008
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(0) = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296286 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296287
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 2, a(1) = 3, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 7, 22, 49, 101, 198, 362, 640, 1101, 1861, 3105, 5134, 8434, 13792, 22481, 36561, 59365, 96286, 156050, 252796, 409350, 662696, 1072644, 1735988, 2809332, 4546074, 7356216, 11903158, 19260302, 31164450, 50425806, 81591376, 132018370, 213611004
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(0) = 7
Complement: (b(n)) = (1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296287 *)
Table[b[n], {n, 0, 20}] (* complement *)
Comments