A296289
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 12, 30, 66, 131, 245, 439, 764, 1302, 2196, 3652, 6028, 9888, 16154, 26312, 42770, 69422, 112570, 182410, 295440, 478354, 774344, 1253296, 2028288, 3282284, 5311326, 8594447, 13906669, 22502073, 36409762, 58912920, 95323834, 154237975, 249563101
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(1) = 12
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296289 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296290
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 11, 30, 65, 130, 243, 436, 759, 1303, 2192, 3649, 6021, 9878, 16137, 26285, 42726, 69351, 112455, 182224, 295139, 477867, 773556, 1252021, 2026225, 3278946, 5305925, 8585708, 13892529, 22479194, 36372743, 58853022, 95226917, 154081160, 249309369
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(1) = 11
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296290 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296291
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 13, 31, 68, 134, 250, 447, 777, 1323, 2220, 3697, 6097, 10002, 16337, 26609, 43250, 70199, 113827, 184444, 298731, 483679, 782960, 1267237, 2050845, 3318782, 5370381, 8689973, 14061250, 22752180, 36814450, 59567715, 96383317, 155952253, 252336862
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(1) = 11
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296291 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296293
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 13, 33, 74, 147, 275, 492, 855, 1455, 2450, 4070, 6712, 11003, 17967, 29255, 47542, 77154, 125092, 202683, 328255, 531463, 860290, 1392374, 2253336, 3646435, 5900551, 9547823, 15449270, 24998079, 40448399, 65447594, 105897177, 171346025, 277244528
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 13
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, ...)
-
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296293 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296294
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 14, 35, 77, 152, 283, 505, 876, 1489, 2495, 4149, 6836, 11206, 18294, 29785, 48399, 78541, 127336, 206314, 334130, 540969, 875671, 1417261, 2293604, 3711590, 6005974, 9718401, 15725271, 25444629, 41170920, 66616665, 107788769, 174406688, 282196783
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 14
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296294 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296295
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 15, 37, 80, 157, 291, 518, 897, 1523, 2550, 4227, 6969, 11417, 18638, 30340, 49298, 79995, 129689, 210121, 340290, 550936, 891798, 1443355, 2335825, 3779905, 6116510, 9897252, 16014658, 25912867, 41928545, 67842497, 109772194, 177615945, 287389465
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 15
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296295 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296296
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 15, 36, 79, 155, 288, 513, 889, 1510, 2529, 4193, 6914, 11328, 18494, 30107, 48921, 79385, 128702, 208524, 337706, 546755, 885033, 1432409, 2318114, 3751248, 6070142, 9822227, 15893265, 25716449, 41610734, 67328268, 108940186, 176269708, 285211220
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 15
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296296 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296297
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 16, 38, 82, 160, 296, 526, 910, 1544, 2584, 4282, 7046, 11549, 18847, 30681, 49848, 80886, 131130, 212453, 344063, 557041, 901676, 1459338, 2361686, 3821749, 6184215, 10006801, 16191912, 26199670, 42392602, 68593357, 110987111, 179581689, 290570126
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 16
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296297 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296556
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 11, 23, 45, 81, 141, 239, 400, 661, 1085, 1772, 2885, 4687, 7604, 12325, 19965, 32328, 52333, 84704, 137082, 221833, 358964, 580848, 939865, 1520768, 2460690, 3981517, 6442268, 10423848, 16866181, 27290096, 44156346, 71446513, 115602932, 187049520
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(2) + 2 = 11
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + n;
j = 1; While[j < 16, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296556 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296557
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 6, 11, 21, 36, 61, 102, 168, 275, 448, 728, 1181, 1914, 3100, 5019, 8125, 13150, 21281, 34437, 55724, 90167, 145897, 236070, 381973, 618049, 1000028, 1618083, 2618117, 4236206, 6854330, 11090543, 17944880, 29035430, 46980317, 76015754, 122996078
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(2) - 2 = 6
Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, ...)
-
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - n;
j = 1; While[j < 16, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296557 *)
Table[b[n], {n, 0, 20}] (* complement *)
Comments