cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A296289 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 12, 30, 66, 131, 245, 439, 764, 1302, 2196, 3652, 6028, 9888, 16154, 26312, 42770, 69422, 112570, 182410, 295440, 478354, 774344, 1253296, 2028288, 3282284, 5311326, 8594447, 13906669, 22502073, 36409762, 58912920, 95323834, 154237975, 249563101
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(1) = 12
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296289 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296290 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 11, 30, 65, 130, 243, 436, 759, 1303, 2192, 3649, 6021, 9878, 16137, 26285, 42726, 69351, 112455, 182224, 295139, 477867, 773556, 1252021, 2026225, 3278946, 5305925, 8585708, 13892529, 22479194, 36372743, 58853022, 95226917, 154081160, 249309369
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(1) = 11
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296290 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296291 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 13, 31, 68, 134, 250, 447, 777, 1323, 2220, 3697, 6097, 10002, 16337, 26609, 43250, 70199, 113827, 184444, 298731, 483679, 782960, 1267237, 2050845, 3318782, 5370381, 8689973, 14061250, 22752180, 36814450, 59567715, 96383317, 155952253, 252336862
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(1) = 11
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296291 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296293 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 13, 33, 74, 147, 275, 492, 855, 1455, 2450, 4070, 6712, 11003, 17967, 29255, 47542, 77154, 125092, 202683, 328255, 531463, 860290, 1392374, 2253336, 3646435, 5900551, 9547823, 15449270, 24998079, 40448399, 65447594, 105897177, 171346025, 277244528
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 13
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296293 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296294 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 14, 35, 77, 152, 283, 505, 876, 1489, 2495, 4149, 6836, 11206, 18294, 29785, 48399, 78541, 127336, 206314, 334130, 540969, 875671, 1417261, 2293604, 3711590, 6005974, 9718401, 15725271, 25444629, 41170920, 66616665, 107788769, 174406688, 282196783
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 14
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296294 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296295 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 15, 37, 80, 157, 291, 518, 897, 1523, 2550, 4227, 6969, 11417, 18638, 30340, 49298, 79995, 129689, 210121, 340290, 550936, 891798, 1443355, 2335825, 3779905, 6116510, 9897252, 16014658, 25912867, 41928545, 67842497, 109772194, 177615945, 287389465
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 15
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296295 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296296 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 15, 36, 79, 155, 288, 513, 889, 1510, 2529, 4193, 6914, 11328, 18494, 30107, 48921, 79385, 128702, 208524, 337706, 546755, 885033, 1432409, 2318114, 3751248, 6070142, 9822227, 15893265, 25716449, 41610734, 67328268, 108940186, 176269708, 285211220
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 15
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296296 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296297 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 16, 38, 82, 160, 296, 526, 910, 1544, 2584, 4282, 7046, 11549, 18847, 30681, 49848, 80886, 131130, 212453, 344063, 557041, 901676, 1459338, 2361686, 3821749, 6184215, 10006801, 16191912, 26199670, 42392602, 68593357, 110987111, 179581689, 290570126
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(2) = 16
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296297 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296556 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 11, 23, 45, 81, 141, 239, 400, 661, 1085, 1772, 2885, 4687, 7604, 12325, 19965, 32328, 52333, 84704, 137082, 221833, 358964, 580848, 939865, 1520768, 2460690, 3981517, 6442268, 10423848, 16866181, 27290096, 44156346, 71446513, 115602932, 187049520
Offset: 0

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(2) + 2 = 11
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + n;
    j = 1; While[j < 16, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296556 *)
    Table[b[n], {n, 0, 20}] (* complement *)

A296557 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 6, 11, 21, 36, 61, 102, 168, 275, 448, 728, 1181, 1914, 3100, 5019, 8125, 13150, 21281, 34437, 55724, 90167, 145897, 236070, 381973, 618049, 1000028, 1618083, 2618117, 4236206, 6854330, 11090543, 17944880, 29035430, 46980317, 76015754, 122996078
Offset: 0

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(2) - 2 = 6
Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - n;
    j = 1; While[j < 16, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296557 *)
    Table[b[n], {n, 0, 20}] (* complement *)
Previous Showing 51-60 of 63 results. Next