cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A296469 Decimal expansion of ratio-sum for A295862; see Comments.

Original entry on oeis.org

3, 8, 7, 0, 2, 3, 6, 0, 7, 9, 7, 9, 5, 9, 5, 9, 3, 2, 3, 2, 8, 2, 0, 5, 2, 3, 1, 1, 7, 8, 3, 9, 9, 5, 0, 1, 3, 8, 5, 6, 7, 3, 9, 8, 3, 0, 0, 9, 7, 2, 3, 1, 9, 9, 4, 3, 0, 1, 0, 8, 7, 6, 5, 5, 9, 5, 8, 0, 5, 4, 5, 4, 0, 6, 7, 3, 8, 5, 3, 9, 0, 5, 8, 8, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A295862, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios. Guide to more ratio-sums and limiting power-ratios:
****
Sequence A ratio-sum for A limiting power-ratio for A

Examples

			ratio-sum = 6.21032710946618494227967...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1 ] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n];
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A295862 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296469 *)

A296425 Decimal expansion of ratio-sum for A296245; see Comments.

Original entry on oeis.org

1, 4, 9, 7, 6, 3, 2, 7, 1, 4, 4, 8, 5, 6, 3, 0, 4, 1, 2, 4, 1, 1, 6, 8, 9, 6, 3, 5, 6, 2, 6, 9, 8, 7, 9, 3, 6, 1, 3, 5, 1, 0, 5, 0, 4, 8, 2, 1, 7, 4, 9, 2, 0, 3, 2, 2, 3, 6, 7, 0, 3, 3, 5, 7, 8, 3, 0, 6, 8, 4, 9, 2, 4, 3, 3, 2, 4, 0, 5, 8, 2, 6, 9, 4, 7, 2
Offset: 2

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296245, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			14.9763271448563041241168963...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296245 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296425 *)

A296434 Decimal expansion of ratio-sum for A296292; see Comments.

Original entry on oeis.org

8, 0, 1, 2, 9, 6, 8, 9, 0, 3, 0, 9, 5, 6, 6, 1, 4, 7, 2, 5, 1, 5, 5, 4, 1, 4, 9, 9, 4, 1, 6, 3, 7, 7, 2, 7, 3, 1, 9, 8, 3, 2, 6, 4, 4, 4, 4, 1, 6, 2, 6, 7, 6, 9, 3, 1, 5, 1, 4, 1, 5, 0, 8, 2, 0, 5, 3, 7, 5, 1, 2, 3, 9, 1, 3, 8, 9, 6, 8, 4, 6, 5, 4, 7, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2017

Keywords

Comments

Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296292 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			Ratio-sum = 8.012968903095661472515541...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296292 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296434 *)

A296461 Decimal expansion of limiting power-ratio for A296292; see Comments.

Original entry on oeis.org

2, 1, 7, 4, 1, 3, 0, 7, 3, 5, 5, 2, 3, 5, 5, 8, 7, 3, 5, 5, 8, 1, 4, 9, 8, 5, 8, 5, 9, 0, 8, 9, 1, 5, 8, 5, 6, 8, 9, 6, 3, 3, 2, 1, 7, 2, 8, 0, 7, 1, 9, 6, 3, 7, 5, 6, 3, 3, 6, 9, 0, 1, 3, 3, 8, 3, 5, 5, 4, 4, 6, 2, 2, 8, 6, 5, 5, 8, 3, 9, 8, 9, 6, 2, 9, 6
Offset: 2

Views

Author

Clark Kimberling, Dec 18 2017

Keywords

Comments

Suppose that A = (a(n)), for n >=0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A296292 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			limiting power-ratio = 21.74130735523558735581498585908915856896...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n];
    j = 1; While[j < 12, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, 15}]  (* A296292 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120] (* A296461 *)

A296844 Decimal expansion of ratio-sum for A296843; see Comments.

Original entry on oeis.org

4, 4, 6, 5, 2, 0, 5, 2, 9, 3, 4, 2, 0, 7, 5, 5, 5, 3, 6, 4, 1, 2, 6, 7, 8, 3, 7, 3, 0, 1, 3, 0, 3, 6, 0, 4, 6, 4, 1, 5, 6, 3, 1, 6, 5, 1, 8, 4, 3, 6, 4, 9, 4, 0, 1, 2, 2, 3, 2, 7, 5, 6, 0, 2, 4, 7, 3, 1, 7, 4, 6, 3, 8, 9, 3, 0, 4, 6, 8, 4, 0, 7, 6, 1, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296843, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425..A296434 for related ratio-sums and A296452..A296461 for related limiting power-ratios.

Examples

			ratio-sum = 4.465205293420755536412678373013036046415...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; b[3] = 6;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n + 1];
    j = 1; While[j < 16, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296843 *)
    GoldenRatio; s = N[Sum[-g + a[n]/a[n - 1], {n, 1, 1000}], 200];
    StringJoin[StringTake[ToString[s], 41], "..."]
    Take[RealDigits[s, 10][[1]], 100] (* A296844 *)

A296850 Decimal expansion of ratio-sum for A296849; see Comments.

Original entry on oeis.org

2, 8, 9, 8, 4, 3, 0, 3, 7, 3, 6, 0, 5, 1, 8, 8, 6, 7, 9, 3, 6, 4, 5, 5, 4, 0, 4, 9, 9, 7, 4, 5, 3, 1, 9, 4, 1, 5, 1, 7, 4, 5, 4, 5, 4, 5, 2, 9, 5, 3, 9, 2, 4, 7, 3, 4, 6, 9, 9, 7, 5, 0, 3, 3, 3, 6, 3, 2, 6, 9, 2, 1, 8, 1, 0, 1, 7, 7, 2, 8, 4, 2, 9, 1, 5, 0
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296849, we have g = 1 + sqrt(2). See A296425..A296434 for related ratio-sums and A296452..A296461 for related limiting power-ratios.

Examples

			ratio-sum = 2.898430373605188679364554049974531941517...
		

Crossrefs

Cf. A296849.

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = 2*a[n - 1] + a[n - 2] + b[n];
    j = 1; While[j < 8, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}]; (* A296849 *)
    r = 1 + Sqrt[2]; s = N[Sum[-r + a[n]/a[n - 1], {n, 1, 1000}], 200];
    StringJoin[StringTake[ToString[s], 41], "..."]
    Take[RealDigits[s, 10][[1]], 100] (* A296850 *)

A296847 Decimal expansion of ratio-sum for A296846; see Comments.

Original entry on oeis.org

2, 5, 1, 3, 4, 8, 8, 7, 0, 3, 3, 6, 6, 4, 2, 1, 5, 6, 2, 0, 4, 4, 5, 4, 9, 0, 9, 4, 9, 3, 9, 1, 3, 9, 1, 5, 2, 1, 9, 1, 7, 5, 6, 9, 4, 4, 3, 0, 5, 3, 6, 7, 3, 0, 6, 5, 3, 1, 7, 8, 9, 8, 7, 7, 2, 3, 6, 5, 3, 9, 9, 9, 5, 2, 4, 6, 1, 8, 4, 0, 4, 0, 7, 2, 9, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296846, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			ratio-sum = 2.513488703366421562044549094939139152191...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 5; b[0] = 1; b[1] = 2; b[2] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] - b[n - 2];
    j = 1; While[j < 16, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296846 *)
    g = GoldenRatio; s = N[Sum[g - a[n]/a[n - 1], {n, 1, 1000}], 200];  (* A296847 *)
    StringJoin[StringTake[ToString[s], 41], "..."]
    Take[RealDigits[s, 10][[1]], 100] (* A296847 *)

A297012 Decimal expansion of ratio-sum for A297011; see Comments.

Original entry on oeis.org

2, 5, 1, 8, 4, 3, 9, 3, 4, 6, 0, 1, 2, 6, 2, 3, 9, 0, 0, 8, 9, 6, 8, 3, 7, 6, 4, 1, 1, 9, 1, 5, 5, 0, 6, 9, 1, 0, 1, 6, 3, 9, 3, 9, 8, 8, 1, 8, 7, 7, 7, 0, 4, 7, 5, 8, 6, 1, 5, 9, 6, 2, 5, 0, 9, 1, 5, 1, 5, 0, 9, 0, 9, 6, 8, 6, 3, 8, 2, 8, 2, 8, 1, 9, 5, 6
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2018

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A297011, we have g = 1 + sqrt(2). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			ratio-sum = 2.518439346012623900896837641191550691016...
		

Crossrefs

Cf. A297011.

Programs

  • Mathematica
    a[0] = 3; a[1] = 5; b[0] = 1; b[1] = 2; b[2] = 4;
    a[n_] := a[n] = 2 a[n - 1] + a[n - 2] - b[n];
    j = 1; While[j < 9, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}]; (* A297011 *)
    r = 1 + Sqrt[2]; s = N[Sum[r - a[n]/a[n - 1], {n, 1, 1000}], 200];
    StringJoin[StringTake[ToString[s], 41], "..."]
    Take[RealDigits[s, 10][[1]], 100] (* A297012 *)

A296426 Decimal expansion of ratio-sum for A296251; see Comments.

Original entry on oeis.org

1, 0, 6, 8, 5, 6, 6, 9, 6, 2, 9, 9, 0, 1, 8, 9, 3, 3, 2, 0, 9, 5, 8, 6, 0, 9, 1, 7, 6, 7, 0, 0, 1, 7, 5, 3, 6, 8, 3, 7, 8, 3, 3, 5, 1, 9, 1, 0, 4, 0, 6, 1, 6, 8, 2, 7, 1, 5, 1, 6, 6, 0, 8, 6, 6, 9, 1, 9, 4, 6, 1, 7, 6, 1, 2, 5, 1, 0, 2, 2, 7, 6, 2, 8, 3, 6
Offset: 2

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296251, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			10.6856696299018933209586091...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]^2;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296246 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296426 *)

A296427 Decimal expansion of ratio-sum for A296257; see Comments.

Original entry on oeis.org

7, 4, 8, 6, 5, 9, 8, 2, 3, 8, 8, 6, 1, 1, 7, 5, 1, 5, 0, 8, 3, 0, 4, 2, 2, 9, 1, 1, 8, 2, 1, 9, 2, 9, 6, 7, 7, 6, 4, 4, 6, 8, 2, 9, 9, 2, 3, 8, 9, 5, 1, 2, 3, 4, 6, 7, 0, 7, 0, 8, 2, 3, 7, 2, 0, 1, 3, 6, 8, 1, 1, 7, 6, 2, 5, 8, 9, 6, 9, 1, 6, 7, 0, 6, 1, 2
Offset: 2

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296257, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			7.48659823886117515083042...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2]^2;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296257 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296427 *)
Showing 1-10 of 24 results. Next