cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 115 results. Next

A296707 Numbers whose base-8 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, 28, 29, 30, 31, 37, 38, 39, 46, 47, 55, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 91, 92, 93, 94, 95, 100, 101, 102, 103, 109, 110, 111, 118, 119, 127, 147, 148, 149, 150, 151, 155, 156, 157, 158, 159, 164
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296706-A296707 partition the natural numbers. See the guide at A296712.

Examples

			The base-8 digits of 164 are 2,4,4; here #(rises) = 1 and #(falls) = 0, so 164 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 8; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296706 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296707 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296708 *)

A296708 Numbers whose base-8 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.

Original entry on oeis.org

8, 16, 17, 24, 25, 26, 32, 33, 34, 35, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 64, 72, 128, 136, 137, 144, 145, 192, 200, 201, 208, 209, 210, 216, 217, 218, 256, 264, 265, 272, 273, 274, 280, 281, 282, 283, 288, 289, 290, 291
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296706-A296707 partition the natural numbers. See the guide at A296712.

Examples

			The base-8 digits of 291 are 4,4,3; here #(rises) = 0 and #(falls) = 1, so 291 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 8; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296706 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296707 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296708 *)

A296710 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.

Original entry on oeis.org

11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 41, 42, 43, 44, 51, 52, 53, 61, 62, 71, 92, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 111, 112, 113, 114, 115, 116, 121, 122, 123, 124, 125, 131, 132, 133, 134, 141, 142
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296709-A296711 partition the natural numbers. See the guide at A296712.

Examples

			The base-9 digits of 142 are 1,6,7; here #(rises) = 2 and #(falls) = 0, so 142 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 9; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296709 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296710 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296711 *)

A296711 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.

Original entry on oeis.org

9, 18, 19, 27, 28, 29, 36, 37, 38, 39, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 81, 90, 162, 171, 172, 180, 181, 243, 252, 253, 261, 262, 263, 270, 271, 272, 324, 333, 334, 342, 343, 344, 351
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296709-A296711 partition the natural numbers. See the guide at A296712.

Examples

			The base-9 digits of 351 are 4,3,0; here #(rises) = 0 and #(falls) = 2, so 351 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 9; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296709 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296710 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296711 *)

A296744 Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 143, 144, 154, 155, 156, 165, 166, 167, 168, 176, 177, 178, 179, 180, 187, 188, 189, 190, 191, 192, 198, 199, 200, 201, 202, 203
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296744-A296746 partition the natural numbers. See the guide at A296712.

Examples

			The base-11 digits of 203 are 1,7,5; here #(rises) = 1 and #(falls) = 1, so 203 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 11; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296744 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296745 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296746 *)

A296745 Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.

Original entry on oeis.org

13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 61, 62, 63, 64, 65, 73, 74, 75, 76, 85, 86, 87, 97, 98, 109, 134, 135, 136, 137, 138, 139, 140, 141, 142, 145, 146, 147, 148, 149, 150
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296744-A296746 partition the natural numbers. See the guide at A296712.

Examples

			The base-11 digits of 150 are 1,2,7; here #(rises) = 2 and #(falls) = 0, so 150 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 11; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296744 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296745 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296746 *)

A296746 Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.

Original entry on oeis.org

11, 22, 23, 33, 34, 35, 44, 45, 46, 47, 55, 56, 57, 58, 59, 66, 67, 68, 69, 70, 71, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 92, 93, 94, 95, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 132, 242, 253
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296744-A296746 partition the natural numbers. See the guide at A296712.

Examples

			The base-11 digits of 253 are 2,1,0; here #(rises) = 0 and #(falls) = 2, so 253 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 11; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296744 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296745 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296746 *)

A296747 Numbers whose base-12 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 168, 169, 180, 181, 182, 192, 193, 194, 195, 204, 205, 206, 207, 208, 216, 217, 218, 219, 220, 221, 228, 229, 230
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296747-A296749 partition the natural numbers. See the guide at A296712.

Examples

			The base-12 digits of 230 are 1,7,2; here #(rises) = 1 and #(falls) = 1, so 230 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 12; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296747 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296748 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296749 *)

A296748 Numbers whose base-12 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.

Original entry on oeis.org

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 53, 54, 55, 56, 57, 58, 59, 66, 67, 68, 69, 70, 71, 79, 80, 81, 82, 83, 92, 93, 94, 95, 105, 106, 107, 118, 119, 131, 158, 159, 160, 161, 162, 163
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296747-A296749 partition the natural numbers. See the guide at A296712.

Examples

			The base-12 digits of 163 are 1,1,7; here #(rises) = 1 and #(falls) = 0, so 163 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 12; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296747 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296748 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296749 *)

A296750 Numbers whose base-13 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 195, 196, 208, 209, 210, 221, 222, 223, 224, 234, 235, 236, 237, 238, 247, 248, 249, 250, 251, 252
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296750-A296751 partition the natural numbers. See the guide at A296712.

Examples

			The base-13 digits of 998 are 5,11,10; here #(rises) = 1 and #(falls) = 1, so 998 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 13; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296750 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296751 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296752 *)
Previous Showing 41-50 of 115 results. Next