A337243
Compositions, sorted by increasing sum, increasing length, and increasing colexicographical order.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 2, 3, 1, 4, 3, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1
The first 5 rows are:
(1),
(2), (1, 1),
(3), (2, 1), (1, 2), (1, 1, 1),
(4), (3, 1), (2, 2), (1, 3), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1),
(5), (4, 1), (3, 2), (2, 3), (1, 4), (3, 1, 1), (2, 2, 1), (1, 3, 1), (2, 1, 2), (1, 2, 2), (1, 1, 3), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (1, 1, 1, 1, 1).
Cf.
A124734 (increasing length, then lexicographic).
Cf.
A296774 (increasing length, then reverse lexicographic).
Cf.
A337259 (increasing length, then reverse colexicographic).
Cf.
A296773 (decreasing length, then lexicographic).
Cf.
A296772 (decreasing length, then reverse lexicographic).
Cf.
A337260 (decreasing length, then colexicographic).
Cf.
A108244 (decreasing length, then reverse colexicographic).
Cf.
A066099 (reverse lexicographic).
Cf.
A228351 (reverse colexicographic).
-
List := proc(n)
local i, j, k, L:
L := []:
for i from 1 to n do
for j from 1 to i do
L := [op(L), op(combinat:-composition(i, j))]:
od:
od:
for k from 1 to numelems(L) do L[k] := ListTools:-Reverse(L[k]): od:
L:
end:
A337259
Compositions, sorted by increasing sum, increasing length and decreasing colexicographical order.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 4, 1, 3, 2, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 1, 4, 2, 3, 3, 2, 4, 1, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
The first 5 rows are:
(1),
(2), (1, 1),
(3), (1, 2), (2, 1), (1, 1, 1),
(4), (1, 3), (2, 2), (3, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 1),
(5), (1, 4), (2, 3), (3, 2), (4, 1), (1, 1, 3), (1, 2, 2), (2, 1, 2), (1, 3, 1), (2, 2, 1), (3, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).
Cf.
A124734 (increasing length, then lexicographic).
Cf.
A296774 (increasing length, then reverse lexicographic).
Cf.
A337243 (increasing length, then colexicographic).
Cf.
A296773 (decreasing length, then lexicographic).
Cf.
A296772 (decreasing length, then reverse lexicographic).
Cf.
A337260 (decreasing length, then colexicographic).
Cf.
A108244 (decreasing length, then reverse colexicographic).
Cf.
A066099 (reverse lexicographic).
Cf.
A228351 (reverse colexicographic).
-
List := proc(n)
local i, j, k, L:
L := []:
for i from 1 to n do
for j from 1 to i do
L := [op(L), op(ListTools:-Reverse([op(combinat:-composition(i, j))]))]:
od:
od:
for k from 1 to numelems(L) do L[k] := ListTools:-Reverse(L[k]): od:
L:
end:
A337260
Compositions, sorted by increasing sum, decreasing length and increasing colexicographical order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 2, 2, 1, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 4, 1, 3, 2, 2, 3, 1, 4, 5
Offset: 1
The first 5 rows are:
(1),
(1, 1), (2),
(1, 1, 1), (2, 1), (1, 2), (3),
(1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (3, 1), (2, 2), (1, 3), (4),
(1, 1, 1, 1, 1), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (3, 1, 1), (2, 2, 1), (1, 3, 1), (2, 1, 2), (1, 2, 2), (1, 1, 3), (4, 1), (3, 2), (2, 3), (1, 4), (5).
Cf.
A124734 (increasing length, then lexicographic).
Cf.
A296774 (increasing length, then reverse lexicographic).
Cf.
A337243 (increasing length, then colexicographic).
Cf.
A337259 (increasing length, then reverse colexicographic).
Cf.
A296773 (decreasing length, then lexicographic).
Cf.
A296772 (decreasing length, then reverse lexicographic).
Cf.
A108244 (decreasing length, then reverse colexicographic).
Cf.
A066099 (reverse lexicographic).
Cf.
A228351 (reverse colexicographic).
-
List := proc(n)
local i, j, k, L:
L := []:
for i from 1 to n do
for j from 1 to i do
L := [op(L), op(combinat:-composition(i, i-j+1))]:
od:
od:
for k from 1 to numelems(L) do L[k] := ListTools:-Reverse(L[k]): od:
L:
end:
A344091
Flattened tetrangle of all finite multisets of positive integers sorted first by sum, then by length, then colexicographically.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 5, 2, 3, 1, 4, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 1, 5, 2, 2, 2, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)(11)
3: (3)(12)(111)
4: (4)(22)(13)(112)(1111)
5: (5)(23)(14)(122)(113)(1112)(11111)
6: (6)(33)(24)(15)(222)(123)(114)(1122)(1113)(11112)(111111)
The version for lex instead of colex is
A036036.
Starting with reversed partitions gives
A036037.
Same as
A334301 with partitions reversed.
The version for revlex instead of colex is
A334302.
The Heinz numbers of these partitions are
A334433.
A026791 reads off lexicographically ordered reversed partitions.
A080577 reads off reverse-lexicographically ordered partitions.
A112798 reads off reversed partitions by Heinz number.
A193073 reads off lexicographically ordered partitions.
A296150 reads off partitions by Heinz number.
Cf.
A000041,
A026793,
A124734,
A185974,
A228531,
A246688,
A296774,
A334433,
A334435,
A334438,
A334439,
A334441,
A334442,
A344086,
A344090.
A344084
Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1
The sets are the columns below:
1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
2 3 3 2 4 4 4 2 3 3 2 5 5 5 5 2 3 4 3 4 4 2
3 4 4 4 3 5 5 5 5 5 5 3
4 5
As a tetrangle, the first four triangles are:
{1}
{2},{1,2}
{3},{1,3},{2,3},{1,2,3}
{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
Positions of first appearances are
A005183.
Partition/composition orderings:
A026791,
A026792,
A026793,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A118457,
A124734,
A162247,
A193073,
A211992,
A228100,
A228531,
A246688,
A272020,
A296774,
A299755,
A304038,
A319247,
A329631,
A334301,
A334302,
A334439,
A334442,
A335122,
A344085,
A344086,
A344087,
A344088,
A344089.
Partition/composition applications:
A036043,
A049085,
A115623,
A129129,
A185974,
A238966,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
A344092
Flattened tetrangle of strict integer partitions, sorted first by sum, then by length, and finally reverse-lexicographically.
Original entry on oeis.org
1, 2, 3, 2, 1, 4, 3, 1, 5, 4, 1, 3, 2, 6, 5, 1, 4, 2, 3, 2, 1, 7, 6, 1, 5, 2, 4, 3, 4, 2, 1, 8, 7, 1, 6, 2, 5, 3, 5, 2, 1, 4, 3, 1, 9, 8, 1, 7, 2, 6, 3, 5, 4, 6, 2, 1, 5, 3, 1, 4, 3, 2, 10, 9, 1, 8, 2, 7, 3, 6, 4, 7, 2, 1, 6, 3, 1, 5, 4, 1, 5, 3, 2, 4, 3, 2, 1
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (3)(21)
4: (4)(31)
5: (5)(41)(32)
6: (6)(51)(42)(321)
7: (7)(61)(52)(43)(421)
8: (8)(71)(62)(53)(521)(431)
9: (9)(81)(72)(63)(54)(621)(531)(432)
Same as
A026793 with rows reversed.
The version for lex instead of revlex is
A344090.
A026791 reads off lexicographically ordered reversed partitions.
A080577 reads off reverse-lexicographically ordered partitions.
A112798 reads off reversed partitions by Heinz number.
A193073 reads off lexicographically ordered partitions.
A296150 reads off partitions by Heinz number.
Cf.
A036037,
A036043,
A103921,
A124734,
A185974,
A211992,
A296774,
A334301,
A334433,
A334435,
A334438,
A334441.
Comments