cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A317919 Number of Wieferich tuples with A297846(n) as largest member, i.e., number of rows of the array in A317721 where A297846(n) is the largest element of that row.

Original entry on oeis.org

1, 3, 2, 7, 1, 2, 1, 6, 1, 317, 1, 1, 230, 580
Offset: 1

Views

Author

Felix Fröhlich, Aug 21 2018

Keywords

Examples

			For n = 2: The second prime that occurs in column 1 of the array in A317721 is 359. 359 occurs as the largest element in 3 rows of the array, so a(2) = 3.
		

Crossrefs

Programs

  • PARI
    addtovec(vec) = my(w=[], vmax=0); for(t=1, #vec, if(vecmax(vec[t]) > vmax, vmax=vecmax(vec[t]))); for(k=1, #vec, forprime(q=1, vmax, if(Mod(vec[k][#vec[k]], q^2)^(q-1)==1, w=concat(w, [0]); w[#w]=concat(vec[k], [q])))); w
    removefromvec(vec) = my(w=[]); for(k=1, #vec, if(vecsort(vec[k])==vecsort(vec[k], , 8), w=concat(w, [0]); w[#w]=vec[k])); w
    forprime(p=1, , my(v=[[p]], i=0); while(#v > 0, v=addtovec(v); for(k=1, #v, if(v[k][1]==v[k][#v[k]], i++)); v=removefromvec(v)); if(i > 0, print1(i, ", ")))

A317721 Irregular array T(n, k) read by rows, where row n lists the members of n-th Wieferich tuple. Rows are arranged first by size of largest term, then by increasing length of row, then in lexicographic order.

Original entry on oeis.org

71, 3, 11, 359, 3, 11, 71, 331, 359, 307, 3, 11, 71, 331, 359, 307, 19, 3, 11, 71, 331, 487, 11, 71, 331, 359, 307, 487, 3, 11, 71, 331, 359, 307, 863, 23, 13, 863, 3, 11, 71, 331, 359, 23, 13, 863, 3, 11, 71, 331, 359, 307, 19, 13, 863, 467, 3, 11, 71, 331
Offset: 1

Views

Author

Felix Fröhlich, Aug 05 2018

Keywords

Comments

Let p_1, p_2, p_3, ..., p_u be a set P of distinct prime numbers and let m_1, m_2, m_3, ..., m_u be a set V of variables. Then P is a Wieferich u-tuple if there exists a mapping from the elements of P to the elements of V such that each of the following congruences is satisfied: m_1^(m_2-1) == 1 (mod (m_2)^2), m_2^(m_3-1) == 1 (mod (m_3)^2), ..., m_u^(m_1-1) == 1 (mod (m_1)^2).

Examples

			Irregular array starts as follows:
   71,   3,  11;
  359,   3,  11,  71, 331;
  359, 307,   3,  11,  71, 331;
  359, 307,  19,   3,  11,  71, 331;
  487,  11,  71, 331, 359, 307;
  487,   3,  11,  71, 331, 359, 307;
  863,  23,  13;
  863,   3,  11,  71, 331, 359,  23,  13;
  863,   3,  11,  71, 331, 359, 307,  19,  13;
  863, 467,   3,  11,  71, 331, 359,  23,  13;
  863,   3,  11,  71, 331, 359, 307, 487,  23,  13;
  863, 467,   3,  11,  71, 331, 359, 307,  19,  13;
  ...
The tuple 359, 3, 11, 71, 331 is a row of the array, because its members satisfy 359^(3-1) == 1 (mod 3^2), 3^(11-1) == 1 (mod 11^2), 11^(71-1) == 1 (mod 71^2), 71^(331-1) == 1 (mod 331^2) and 331^(359-1) == 1 (mod 359^2).
		

Crossrefs

Cf. A271100 (terms of first row of length n), A297846 (distinct terms of column 1 of T), A317919 (number of rows of T with the same largest element), A317920 (length of row n of T).

Programs

  • PARI
    addtovec(vec) = my(w=[], vmax=0); for(t=1, #vec, if(vecmax(vec[t]) > vmax, vmax=vecmax(vec[t]))); for(k=1, #vec, forprime(q=1, vmax, if(Mod(vec[k][#vec[k]], q^2)^(q-1)==1, w=concat(w, [0]); w[#w]=concat(vec[k], [q])))); w
    removefromvec(vec) = my(w=[]); for(k=1, #vec, if(vecsort(vec[k])==vecsort(vec[k], , 8), w=concat(w, [0]); w[#w]=vec[k])); w
    printfromvec(vec) = for(k=1, #vec, if(vec[k][1]==vec[k][#vec[k]], for(t=1, #vec[k]-1, print1(vec[k][t], ", ")); print("")))
    forprime(p=1, , my(v=[[p]]); while(#v > 0, v=addtovec(v); printfromvec(v); v=removefromvec(v)))

A317920 Length of row n of A317721, i.e., number of elements in n-th Wieferich tuple when ordering the tuples as in A317721.

Original entry on oeis.org

3, 5, 6, 7, 6, 7, 3, 8, 9, 9, 10, 10, 11, 9, 2, 3, 6, 9, 10, 11, 12, 13, 14, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12
Offset: 1

Views

Author

Felix Fröhlich, Aug 21 2018

Keywords

Examples

			For n = 1: Row 1 of A317721 has 3 elements, i.e., the first Wieferich tuple listed in A317721 is a "Wieferich triple", so a(1) = 3.
		

Crossrefs

Programs

  • PARI
    addtovec(vec) = my(w=[], vmax=0); for(t=1, #vec, if(vecmax(vec[t]) > vmax, vmax=vecmax(vec[t]))); for(k=1, #vec, forprime(q=1, vmax, if(Mod(vec[k][#vec[k]], q^2)^(q-1)==1, w=concat(w, [0]); w[#w]=concat(vec[k], [q])))); w
    removefromvec(vec) = my(w=[]); for(k=1, #vec, if(vecsort(vec[k])==vecsort(vec[k], , 8), w=concat(w, [0]); w[#w]=vec[k])); w
    printfromvec(vec) = for(k=1, #vec, if(vec[k][1]==vec[k][#vec[k]], print1(#vec[k]-1, ", ")))
    forprime(p=1, , my(v=[[p]]); while(#v > 0, v=addtovec(v); printfromvec(v); v=removefromvec(v)))

A344282 Column 1 of A317721.

Original entry on oeis.org

71, 359, 359, 359, 487, 487, 863, 863, 863, 863, 863, 863, 863, 1069, 1093, 1093, 1483, 1549, 1549, 1549, 1549, 1549, 1549, 2281, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511, 3511
Offset: 1

Views

Author

Felix Fröhlich, May 14 2021

Keywords

Comments

A297846 with each term repeated A317919(n) times.

Crossrefs

Cf. A297846, A317721, A317919, A344283 (column 2).

Programs

  • PARI
    addtovec(vec) = my(w=[], vmax=0); for(t=1, #vec, if(vecmax(vec[t]) > vmax, vmax=vecmax(vec[t]))); for(k=1, #vec, forprime(q=1, vmax, if(Mod(vec[k][#vec[k]], q^2)^(q-1)==1, w=concat(w, [0]); w[#w]=concat(vec[k], [q])))); w
    removefromvec(vec) = my(w=[]); for(k=1, #vec, if(vecsort(vec[k])==vecsort(vec[k], , 8), w=concat(w, [0]); w[#w]=vec[k])); w
    printfromvec(vec) = for(k=1, #vec, if(vec[k][1]==vec[k][#vec[k]], print1(vec[k][1], ", ")))
    forprime(p=1, , my(v=[[p]]); while(#v > 0, v=addtovec(v); printfromvec(v); v=removefromvec(v)))

A344284 Primes that are the largest member of a Wieferich 5-tuple.

Original entry on oeis.org

359, 3511, 6451, 6733
Offset: 1

Views

Author

Felix Fröhlich, May 14 2021

Keywords

Crossrefs

Subsequence of A297846. Cf. A317721, A317920.

A344285 Primes that are the largest member of a Wieferich 6-tuple.

Original entry on oeis.org

359, 487, 1483, 3511
Offset: 1

Views

Author

Felix Fröhlich, May 14 2021

Keywords

Crossrefs

Subsequence of A297846. Cf. A317721, A317920.

A344286 Primes that are the largest member of a Wieferich 7-tuple.

Original entry on oeis.org

359, 487, 3511
Offset: 1

Views

Author

Felix Fröhlich, May 14 2021

Keywords

Crossrefs

Subsequence of A297846. Cf. A317721, A317920.

A344287 Primes that are the largest member of a Wieferich 8-tuple.

Original entry on oeis.org

863, 3511, 6733, 7393
Offset: 1

Views

Author

Felix Fröhlich, May 14 2021

Keywords

Crossrefs

Subsequence of A297846. Cf. A317721, A317920.

A344288 Primes that are the largest member of a Wieferich 9-tuple.

Original entry on oeis.org

863, 1069, 1549, 3511
Offset: 1

Views

Author

Felix Fröhlich, May 14 2021

Keywords

Crossrefs

Subsequence of A297846. Cf. A317721, A317920.

A344289 Primes that are the largest member of a Wieferich 10-tuple.

Original entry on oeis.org

863, 1549, 3511
Offset: 1

Views

Author

Felix Fröhlich, May 14 2021

Keywords

Crossrefs

Subsequence of A297846. Cf. A317721, A317920.
Showing 1-10 of 11 results. Next