cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A335633 Number of ordered ways of writing the n-th n-gonal number as a sum of n n-gonal numbers (with 0's allowed).

Original entry on oeis.org

1, 1, 3, 6, 5, 95, 336, 2597, 26832, 197577, 1847800, 14621101, 129754956, 1146534701, 12342194879, 161225146370, 2464561564936, 39642413790129, 620059254486798, 9430493858327959, 136438759335452360, 1881721996407396801, 24999081626667425376, 321601467988647184779
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2020

Keywords

Examples

			a(3) = 6 because the third triangular number is 6 and we have [6, 0, 0], [0, 6, 0], [0, 0, 6], [3, 3, 0], [3, 0, 3] and [0, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k (n - 2) - n + 4)/2), {k, 0, n}]^n, {x, 0, n (n^2 - 3 n + 4)/2}], {n, 0, 23}]
  • PARI
    p(n,k) = {k * (k * (n - 2) - n + 4) / 2}
    a(n) = {my(m=p(n,n)); polcoef((sum(k=0, n, x^p(n,k)) + O(x*x^m))^n, m)} \\ Andrew Howroyd, Oct 03 2020

Formula

a(n) = [x^p(n,n)] (Sum_{k=0..n} x^p(n,k))^n, where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A294071 Number of ordered ways of writing n^2 as a sum of n squares > 1.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 6, 7, 288, 262, 13702, 69531, 610567, 5356091, 51724960, 521956086, 5467658641, 59931636545, 690518644584, 8100858045744, 99142980567486, 1246972499954475, 16142015005905558, 215722810653380845, 2955759897694815985, 41614888439136252691
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2018

Keywords

Examples

			a(5) = 5 because we have [9, 4, 4, 4, 4], [4, 9, 4, 4, 4], [4, 4, 9, 4, 4], [4, 4, 4, 9, 4] and [4, 4, 4, 4, 9].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[((-1 - 2 x + EllipticTheta[3, 0, x])/2)^n, {x, 0, n^2}], {n, 0, 25}]

Formula

a(n) = [x^(n^2)] (Sum_{k>=2} x^(k^2))^n.
Previous Showing 11-12 of 12 results.