A316210
Number of integer partitions of the n-th Fermi-Dirac prime into Fermi-Dirac primes.
Original entry on oeis.org
1, 1, 2, 2, 4, 7, 11, 17, 31, 37, 54, 109, 152, 283, 380, 878, 1482, 1906, 3101, 3924, 6197, 11915, 14703, 27063, 40016, 48450, 84633, 101419, 121250, 204461, 398916, 551093, 646073, 883626, 1030952, 1397083, 2522506, 3875455, 5128718, 7741307, 8860676
Offset: 1
The a(6) = 7 partitions of 9 into Fermi-Dirac primes are (9), (54), (72), (333), (432), (522), (3222).
Cf.
A000586,
A000607,
A050376,
A064547,
A213925,
A279065,
A299755,
A299757,
A305829,
A316202,
A316211,
A316220.
-
nn=60;
FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
FDprimeList=Select[Range[nn],FDpQ];
ser=Product[1/(1-x^d),{d,FDprimeList}];
Table[SeriesCoefficient[ser,{x,0,FDprimeList[[n]]}],{n,Length[FDprimeList]}]
A316211
Number of strict integer partitions of n into Fermi-Dirac primes.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 4, 4, 4, 6, 4, 9, 5, 10, 8, 11, 11, 12, 15, 13, 19, 16, 21, 21, 24, 26, 27, 32, 31, 37, 37, 42, 44, 47, 52, 53, 61, 61, 69, 71, 78, 82, 88, 95, 99, 108, 112, 122, 128, 137, 144, 154, 163, 172, 184, 193, 206, 216, 230, 242, 256
Offset: 0
The a(16) = 9 strict integer partitions of 16 into Fermi-Dirac primes:
(16),
(9,7), (11,5), (13,3),
(7,5,4), (9,4,3), (9,5,2), (11,3,2),
(7,4,3,2).
Cf.
A000586,
A000607,
A050376,
A064547,
A213925,
A279065,
A299755,
A299757,
A305829,
A316202,
A316210,
A316220.
-
nn=60;
FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
FDprimeList=Select[Range[nn],FDpQ];
ser=Product[1+x^d,{d,FDprimeList}];
Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
A319827
FDH numbers of relatively prime strict integer partitions.
Original entry on oeis.org
2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 66, 68, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 86, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112
Offset: 1
The sequence of all relatively prime strict integer partitions begins: (1), (2,1), (3,1), (4,1), (3,2), (5,1), (6,1), (4,3), (5,2), (7,1), (3,2,1), (8,1), (5,3), (4,2,1).
-
nn=200;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],GCD@@(FDfactor[#]/.FDrules)==1&]
A299758
Largest FDH number of a strict integer partition of n.
Original entry on oeis.org
1, 2, 3, 6, 8, 12, 24, 30, 42, 60, 120, 168, 216, 280, 420, 840, 1080, 1512, 1890, 2520, 3780, 7560, 9240, 11880, 16632, 20790, 27720, 41580, 83160, 98280, 120960, 154440, 216216, 270270, 360360, 540540, 1081080, 1330560, 1572480, 1921920, 2471040, 3459456, 4324320
Offset: 1
Sequence of strict integer partitions realizing each maximum begins: () (1) (2) (21) (31) (32) (321) (421) (521) (432) (4321) (5321) (6321) (5431) (5432) (54321) (64321) (65321) (65421) (65431) (65432).
-
nn=150;
FDprimeList=Select[Range[nn],MatchQ[FactorInteger[#],{{?PrimeQ,?(MatchQ[FactorInteger[2#],{{2,_}}]&)}}]&];
Table[Max[Times@@FDprimeList[[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,Length[FDprimeList]}]
A300351
Triangle whose n-th row lists in order all Heinz numbers of integer partitions of n into odd parts.
Original entry on oeis.org
1, 2, 4, 5, 8, 10, 16, 11, 20, 32, 22, 25, 40, 64, 17, 44, 50, 80, 128, 34, 55, 88, 100, 160, 256, 23, 68, 110, 125, 176, 200, 320, 512, 46, 85, 121, 136, 220, 250, 352, 400, 640, 1024, 31, 92, 170, 242, 272, 275, 440, 500, 704, 800, 1280, 2048, 62, 115, 184
Offset: 1
Triangle of partitions into odd parts begins:
0
(1)
(11)
(3) (111)
(31) (1111)
(5) (311) (11111)
(51) (33) (3111) (111111)
(7) (511) (331) (31111) (1111111)
(71) (53) (5111) (3311) (311111) (11111111)
Cf.
A000009,
A031368,
A056239,
A066208,
A078408,
A215366,
A246867,
A299759,
A299757,
A300063,
A300272.
-
Table[Sort[Times@@Prime/@#&/@Select[IntegerPartitions[n],And@@OddQ/@#&]],{n,0,12}]
A316228
Numbers whose Fermi-Dirac prime factorization sums to a Fermi-Dirac prime.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 28, 29, 31, 34, 36, 37, 39, 40, 41, 43, 46, 47, 48, 49, 52, 53, 55, 56, 58, 59, 61, 63, 66, 67, 71, 73, 76, 79, 81, 82, 83, 88, 89, 90, 94, 97, 100, 101, 103, 104, 107, 108, 109, 112
Offset: 1
Sequence of multiarrows in the form "number: sum <= factors" begins:
2: 2 <= {2}
3: 3 <= {3}
4: 4 <= {4}
5: 5 <= {5}
6: 5 <= {2,3}
7: 7 <= {7}
9: 9 <= {9}
10: 7 <= {2,5}
11: 11 <= {11}
12: 7 <= {3,4}
13: 13 <= {13}
14: 9 <= {2,7}
16: 16 <= {16}
17: 17 <= {17}
18: 11 <= {2,9}
19: 19 <= {19}
20: 9 <= {4,5}
22: 13 <= {2,11}
23: 23 <= {23}
24: 9 <= {2,3,4}
-
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
Select[Range[2,200],Length[FDfactor[Total[FDfactor[#]]]]==1&]
A316265
FDH numbers of strict integer partitions with prime parts.
Original entry on oeis.org
1, 3, 4, 7, 11, 12, 19, 21, 25, 28, 33, 41, 44, 47, 57, 61, 75, 76, 77, 83, 84, 97, 100, 121, 123, 132, 133, 139, 141, 151, 164, 169, 175, 183, 188, 197, 209, 228, 231, 233, 241, 244, 249, 271, 275, 287, 289, 291, 300, 307, 308, 329, 332, 347, 361, 363, 388
Offset: 1
Sequence of strict integer partitions with prime parts, preceded by their FDH numbers, begins:
1: ()
3: (2)
4: (3)
7: (5)
11: (7)
12: (3,2)
19: (11)
21: (5,2)
25: (13)
28: (5,3)
33: (7,2)
41: (17)
44: (7,3)
47: (19)
57: (11,2)
61: (23)
75: (13,2)
76: (11,3)
77: (7,5)
83: (29)
84: (5,3,2)
-
nn=100;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],And@@PrimeQ/@(FDfactor[#]/.FDrules)&]
A316266
FDH numbers of strict integer partitions with prime parts and prime length.
Original entry on oeis.org
12, 21, 28, 33, 44, 57, 75, 76, 77, 84, 100, 123, 132, 133, 141, 164, 175, 183, 188, 209, 228, 231, 244, 249, 275, 287, 291, 300, 308, 329, 332, 363, 388, 399, 417, 427, 451, 453, 475, 484, 492, 507, 517, 525, 532, 556, 564, 581, 591, 604, 627, 671, 676, 679
Offset: 1
Sequence of strict integer partitions with prime parts and prime length, preceded by their FDH numbers, begins:
12: (3,2)
21: (5,2)
28: (5,3)
33: (7,2)
44: (7,3)
57: (11,2)
75: (13,2)
76: (11,3)
77: (7,5)
84: (5,3,2)
-
nn=1000;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],And[PrimeQ[Length[FDfactor[#]]],And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]
A316267
FDH numbers of strict integer partitions of prime numbers with a prime number of prime parts.
Original entry on oeis.org
12, 21, 57, 123, 249, 417, 532, 699, 867, 1100, 1389, 1463, 1509, 1708, 2049, 2068, 2307, 2324, 2913, 3116, 3147, 3157, 3273, 3325, 3619, 3903, 4227, 4268, 4636, 4821, 5079, 5225, 5324, 5516, 5739, 6308, 6391, 6524, 6621, 6644, 7469, 8092, 8193, 8225, 8457
Offset: 1
Sequence of strict integer partitions of prime numbers with a prime number of prime parts, preceded by their FDH numbers, begins:
12: (3,2)
21: (5,2)
57: (11,2)
123: (17,2)
249: (29,2)
417: (41,2)
532: (11,5,3)
699: (59,2)
867: (71,2)
1100: (13,7,3)
1389: (101,2)
1463: (11,7,5)
1509: (107,2)
1708: (23,5,3)
-
nn=1000;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],And[PrimeQ[Total[FDfactor[#]/.FDrules]],PrimeQ[Length[FDfactor[#]]],And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]
A319829
FDH numbers of strict integer partitions of odd numbers.
Original entry on oeis.org
2, 4, 6, 7, 10, 11, 12, 16, 18, 19, 20, 21, 25, 26, 30, 31, 33, 34, 35, 36, 41, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 68, 71, 74, 75, 78, 79, 80, 83, 86, 88, 90, 91, 92, 93, 95, 97, 98, 99, 102, 103, 105, 108, 109, 116, 118, 119, 121, 123, 125
Offset: 1
The sequence of all strict integer partitions of odd numbers begins: (1), (3), (2,1), (5), (4,1), (7), (3,2), (9), (6,1), (11), (4,3), (5,2), (13), (8,1), (4,2,1), (15), (7,2), (10,1), (5,4), (6,3), (17), (12,1), (19), (9,2), (8,3), (21), (6,2,1), (7,4), (5,3,1), (11,2), (14,1), (4,3,2).
-
nn=200;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],OddQ[Total[FDfactor[#]/.FDrules]]&]
Comments