A299857
Coefficients in expansion of (E_6^2/E_4^3)^(1/16).
Original entry on oeis.org
1, -108, -7128, -5975856, -1648702944, -817564231656, -330392410226208, -154125342449733600, -69899495093389741824, -33019122368612611954332, -15654348707682435222420432, -7540807164973158284078993424
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16), this sequence (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/16) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299858
Coefficients in expansion of (E_6^2/E_4^3)^(1/12).
Original entry on oeis.org
1, -144, -6912, -7563456, -1885022208, -979976901600, -383134788854784, -179914112738674560, -80649007527361757184, -38019764211792500474064, -17921855069499640580651520, -8604055343353988623666807872
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18), this sequence (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/12) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299859
Coefficients in expansion of (E_6^2/E_4^3)^(1/8).
Original entry on oeis.org
1, -216, -2592, -10412064, -1955812608, -1193816824272, -424976182312320, -205525905843878208, -89308328381644142592, -42098146869799454214456, -19580168925118916335723968, -9345687920591466548039096160
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32), this sequence (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299860
Coefficients in expansion of (E_6^2/E_4^3)^(1/6).
Original entry on oeis.org
1, -288, 6912, -13136256, -1543993344, -1312510191552, -400771816381440, -207423640540991232, -85808962187667652608, -40835278880374417949088, -18652791316021929491056128, -8871850083830324974981015680
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36), this sequence (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/6) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299861
Coefficients in expansion of (E_6^2/E_4^3)^(1/4).
Original entry on oeis.org
1, -432, 41472, -19704384, 593104896, -1488746462112, -215673487239168, -180545262418802304, -58940991594820435968, -31030127172303490499184, -13143520096697989968012288, -6336110261914309914844683456
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48), this sequence (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/4) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299862
Coefficients in expansion of (E_6^2/E_4^3)^(1/32).
Original entry on oeis.org
1, -54, -5022, -3259116, -1012953978, -479848911192, -201506019745716, -93655132040105136, -43096009052844972522, -20449878102745826555178, -9772372681245342509703768, -4732826670479844302345499132, -2309711500786845517082643561660
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8), this sequence (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24),
A299863 (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/32) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299863
Coefficients in expansion of (E_6^2/E_4^3)^(1/9).
Original entry on oeis.org
1, -192, -4608, -9494784, -1988603904, -1136127187584, -419383041398784, -200225564597488128, -88040635024586342400, -41470393697874515307456, -19381646100387803980004352, -9267227811160245194038205184
Offset: 0
(E_6^2/E_4^3)^(k/288):
A289366 (k=1),
A296609 (k=2),
A296614 (k=3),
A296652 (k=4),
A297021 (k=6),
A299422 (k=8),
A299862 (k=9),
A289368 (k=12),
A299856 (k=16),
A299857 (k=18),
A299858 (k=24), this sequence (k=32),
A299859 (k=36),
A299860 (k=48),
A299861 (k=72),
A299414 (k=96),
A299413 (k=144),
A289210 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]^2/E4[x]^3)^(1/9) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299950
Coefficients in expansion of (E_4^3/E_6^2)^(1/18).
Original entry on oeis.org
1, 96, 16128, 7622784, 2900355072, 1319081479488, 592274331915264, 278167185566287104, 131973896384325992448, 63712327450686749464032, 31055582715009234813891072, 15282363171869402875165461888, 7574187854327285047920802652160
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12), this sequence (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/18) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)