cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A300510 Number of ways to write n^2 as 4^k*(m^2+1) + x^2 + y^2, where m is 1 or 2, and k,x,y are nonnegative integers with x <= y.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 3, 1, 4, 4, 5, 3, 5, 4, 6, 1, 3, 4, 5, 4, 7, 6, 5, 3, 8, 6, 6, 4, 5, 7, 7, 1, 5, 4, 11, 4, 7, 5, 6, 4, 6, 8, 5, 6, 12, 5, 5, 3, 6, 9, 8, 6, 7, 6, 10, 4, 7, 7, 6, 7, 5, 9, 9, 1, 8, 5, 10, 4, 9, 11, 9, 4, 11, 7, 12, 5, 8, 7, 7, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 07 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1; in other words, for any integer n > 1 there is a nonnegative integer k such that either n^2 - 2*4^k or n^2 - 5*4^k can be written as the sum of two squares. Moreover, a(n) = 1 only for n = 2^k with k > 0.
This conjecture is stronger than the first conjecture in A300448. We have verified that a(n) > 0 for all n = 2..5*10^7.
Consider positive integers c not divisible by 4 such that for any integer n > 1 there is a nonnegative integer k for which n^2 - 2*4^k or n^2 - c*4^k can be written as the sum of two squares. Our computation for n up to 3*10^7 shows that the only candidates for values of c smaller than 160 are 5, 17, 18, 26, 29, 41, 45, 65, 74, 89, 98, 101, 113, 122, 125, 146, 149, 153. These numbers have the form 9^a*(3*b+2) with a and b nonnegative integers and the p-adic order of 3*b+2 is even for any prime p == 3 (mod 4). For n = 42211965 there is no nonnegative integer k such that n^2 - 2*4^k or n^2 - 162*4^k can be written as the sum of two squares.
Qing-Hu Hou at Tianjin Univ. reported that he had verified a(n) > 0 for n up to 10^9. - Zhi-Wei Sun, Mar 14 2018
Qing-Hu Hou found that 29, 65, 113 should be excluded from the candidates. In fact, for c = 29, 65, 113 there is no nonnegative integer k such that N(c)^2 - 2*4^k or N(c)^2 - c*4^k can be written as the sum of two squares, where N(29) = 51883659, N(65) = 56173837 and N(113) = 65525725. - Zhi-Wei Sun, Mar 23 2018
a(n) > 0 for 1 < n < 6*10^9. - Giovanni Resta, Jun 14 2019

Examples

			a(1) = 0 since 1^2 - 4^k*(m^2+1) < 0 for k = 0,1,2,... and m = 1, 2.
a(2) = 1 since 2^2 = 4^0*(1^2+1) + 1^2 + 1^2.
a(3) = 2 since 3^2 = 4^0*(2^2+1) + 0^2 + 2^2 = 4^1*(1^2+1) + 0^2 + 1^2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1]-3,4]==0&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=n==0||(n>0&&g[n]);
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[QQ[n^2-4^k*(m^2+1)],Do[If[SQ[n^2-4^k(m^2+1)-x^2],r=r+1],{x,0,Sqrt[(n^2-4^k(m^2+1))/2]}]],{m,1,2},{k,0,Log[4,n^2/(m^2+1)]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A302981 Number of ways to write n as x^2 + 2*y^2 + 2^z + 2^w, where x,y,z,w are nonnegative integers with z <= w.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 4, 5, 5, 6, 7, 8, 7, 8, 6, 6, 7, 9, 8, 11, 12, 9, 7, 10, 8, 11, 11, 11, 10, 9, 6, 8, 10, 11, 14, 16, 12, 12, 11, 12, 13, 17, 13, 13, 13, 10, 7, 11, 12, 13, 15, 15, 14, 14, 8, 15, 14, 13, 15, 16
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 16 2018

Keywords

Comments

Clearly, a(2*n) > 0 if a(n) > 0. We note that 52603423 is the first value of n > 1 with a(n) = 0.
See also A302982 and A302983 for related things.

Examples

			a(2) = 1 with 2 = 0^2 + 2*0^2 + 2^0 + 2^0.
a(3) = 2 with 3 = 1^2 + 2*0^2 + 2^0 + 2^0 = 0^2 + 2*0^2 + 2^0 + 2^1.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[MemberQ[{5,7},Mod[Part[Part[f[n],i],1],8]]&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[n-2^k-2^j],Do[If[SQ[n-2^k-2^j-2x^2],r=r+1],{x,0,Sqrt[(n-2^k-2^j)/2]}]],{k,0,Log[2,n]-1},{j,k,Log[2,Max[1,n-2^k]]}];tab=Append[tab,r],{n,1,60}];Print[tab]

A302983 Number of ways to write n as x^2 + 2*y^2 + 2^z + 3*2^w with x,y,z,w nonnegative integers.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 4, 5, 4, 5, 6, 4, 8, 8, 7, 12, 8, 6, 9, 9, 6, 13, 13, 8, 13, 12, 8, 13, 14, 11, 15, 17, 8, 14, 11, 11, 16, 17, 11, 17, 19, 8, 17, 19, 10, 19, 18, 12, 15, 17, 12, 20, 17, 13, 20, 18, 16, 24, 18, 15
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 16 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
Clearly, a(2*n) > 0 if a(n) > 0. We have verified a(n) > 0 for all n = 4..6*10^9.
See also A302982 and A302984 for similar conjectures.

Examples

			a(4) = 1 with 4 = 0^2 + 2*0^2 + 2^0 + 3*2^0.
a(5) = 2 with 5 = 1^2 + 2*0^2 + 2^0 + 3*2^0 = 0^2 + 2*0^2 + 2^1 + 3*2^0.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[MemberQ[{5,7},Mod[Part[Part[f[n],i],1],8]]&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[n-3*2^k-2^j],Do[If[SQ[n-3*2^k-2^j-2x^2],r=r+1],{x,0,Sqrt[(n-3*2^k-2^j)/2]}]],{k,0,Log[2,n/3]},{j,0,Log[2,Max[1,n-3*2^k]]}];tab=Append[tab,r],{n,1,60}];Print[tab]

A301452 Number of ways to write n^2 as m*4^k + x^2 + 2*y^2 with m in the set {2, 3} and k,x,y nonnegative integers.

Original entry on oeis.org

0, 2, 2, 2, 2, 5, 3, 2, 4, 4, 4, 5, 5, 5, 6, 2, 4, 6, 5, 4, 9, 5, 4, 5, 5, 7, 10, 5, 6, 7, 8, 2, 6, 6, 7, 6, 9, 7, 10, 4, 6, 12, 3, 5, 10, 5, 6, 5, 5, 8, 9, 7, 7, 12, 5, 5, 13, 9, 6, 7, 8, 10, 13, 2, 6, 8, 10, 6, 15, 9, 9, 6, 10, 9, 12, 7, 8, 13, 6, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 21 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
We call this the 2-3 conjecture. It is simialr to the author's 2-5 conjecture which states that A300510(n) > 0 for all n > 1.
We have verified that a(n) > 0 for all n = 2..5*10^7.
It is known that the number of ways to write a positive integer n as x^2 + 2*y^2 with x and y integers is twice the difference |{d > 0: d|n and d == 1,3 (mod 8)}| - |{d>0: d|n and d == 5,7 (mod 8)}|.

Examples

			a(2) = 2 since 2^2 = 2*4^0 + 0^2 + 2*1^2 and 2^2 = 3*4^0 + 1^2 + 2*0^2.
a(3) = 2 since 3^2 = 2*4^1 + 1^2 + 2*0^2 and 3^2 = 3*4^0 + 2^2 + 2*1^2.
a(5) = 2 since 5^2 = 2*4^1 + 3^2 + 2*2^2 and 5^2 = 3*4^0 + 2^2 + 2*3^2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=n/2^(IntegerExponent[n,2]);
    OD[n_]:=OD[n]=Divisors[f[n]];
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&Sum[JacobiSymbol[-2,Part[OD[n],i]],{i,1,Length[OD[n]]}]!=0);
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[QQ[n^2-m*4^k],Do[If[SQ[n^2-m*4^k-2x^2],r=r+1],{x,0,Sqrt[(n^2-m*4^k)/2]}]],{m,2,3},{k,0,Log[4,n^2/m]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A302985 Number of ordered pairs (x, y) of nonnegative integers such that n - 2^x - 3*2^y has the form u^2 + 2*v^2 with u and v integers.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 4, 5, 4, 5, 6, 4, 7, 7, 7, 10, 7, 6, 8, 8, 6, 11, 10, 8, 10, 11, 8, 11, 12, 11, 12, 14, 8, 10, 9, 11, 11, 14, 11, 12, 14, 8, 12, 15, 10, 14, 13, 12, 11, 14, 12, 17, 13, 13, 15, 15, 16, 17, 13, 15
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 16 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
This is equivalent to the author's conjecture in A302983. We have verified a(n) > 0 for all n = 4...6*10^9.
See also A302982 and A302984 for similar conjectures.

Examples

			a(4) = 1 with 4 - 2^0 - 3*2^0 = 0^2 + 2*0^2.
a(5) = 2 with 5 - 2^0 - 3*2^0 = 1^2 + 2*0^2 and 5 - 2^1 - 3*2^0 = 0^2 + 2*0^2.
a(6) = 2 with 6 - 2^0 - 3*2^0 = 0^2 + 2*1^2 and 6 - 2^1 - 3*2^0 = 1^2 + 2*0^2.
		

Crossrefs

Programs

  • Mathematica
      f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[MemberQ[{5,7},Mod[Part[Part[f[n],i],1],8]]&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[n-3*2^k-2^j],r=r+1],{k,0,Log[2,n/3]},{j,0,If[3*2^k==n,-1,Log[2,n-3*2^k]]}];tab=Append[tab,r],{n,1,60}];Print[tab]

A338096 Number of ways to write 2*n+1 as x^2 + y^2 + z^2 + w^2 with x + 2*y + 3*z a positive power of two, where x, y, z, w are nonnegative integers.

Original entry on oeis.org

1, 1, 5, 1, 3, 2, 3, 2, 5, 1, 5, 2, 4, 4, 7, 2, 5, 5, 3, 3, 6, 1, 5, 3, 2, 6, 6, 2, 4, 2, 2, 2, 8, 2, 7, 3, 5, 6, 6, 1, 5, 6, 7, 7, 8, 4, 6, 5, 5, 7, 11, 3, 13, 5, 3, 6, 11, 4, 7, 6, 3, 7, 9, 5, 8, 6, 3, 8, 9, 5, 10, 3, 9, 8, 7, 2, 7, 6, 5, 4, 4, 3, 12, 7, 3, 9, 9, 5, 11, 8, 2, 5, 10, 3, 5, 5, 2, 9, 9, 4, 13
Offset: 0

Views

Author

Zhi-Wei Sun, Oct 09 2020

Keywords

Comments

Conjecture 1 (1-2-3 Conjecture): a(n) > 0 for all n >= 0. In other words, any positive odd integer m can be written as x^2 + y^2 + z^2 + w^2 with x, y, z, w nonnegative integers such that x + 2*y + 3*z = 2^k for some positive integer k.
Conjecture 2 (Strong Version of the 1-2-3 Conjecture): For any integer m > 4627 not congruent to 0 or 2 modulo 8, we can write m as x^2 + y^2 + z^2 + w^2 with x, y, z, w nonnegative integers such that x + 2*y + 3*z = 4^k for some positive integer k.
We have verified Conjectures 1 and 2 for m up to 5*10^6. Conjecture 2 implies that A299924(n) > 0 for all n > 0.
By Theorem 1.2(v) of the author's 2017 JNT paper, any positive integer n can be written as x^2 + y^2 + z^2 + 4^k with k, x, y, z nonnegative integers.
See also A338094 and A338095 for similar conjectures.

Examples

			a(1) = 1, and 2*1 + 1 = 1^2 + 0^2 + 1^2 + 1^2 with 1 + 2*0 + 3*1 = 2^2.
a(3) = 1, and 2*3 + 1 = 1^2 + 2^2 + 1^2 + 1^2 with 1 + 2*2 + 3*1 = 2^3.
a(9) = 1, and 2*9 + 1 = 1^2 + 6^2 + 1^2 + 1^2 with 1 + 2*6 + 3*1 = 2^4.
a(21) = 1, and 2*21 + 1 = 5^2 + 4^2 + 1^2 + 1^2 with 5 + 2*4 + 3*1 = 2^4.
a(39) = 1, and 2*39 + 1 = 1^2 + 5^2 + 7^2 + 2^2 with 1 + 2*5 + 3*7 = 2^5.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    PQ[n_]:=PQ[n]=n>1&&IntegerQ[Log[2,n]];
    tab={};Do[r=0;Do[If[SQ[2n+1-x^2-y^2-z^2]&&PQ[x+2y+3z],r=r+1],{x,0,Sqrt[2n+1]},{y,Boole[x==0],Sqrt[2n+1-x^2]},{z,0,Sqrt[2n+1-x^2-y^2]}]; tab=Append[tab,r],{n,0,100}];Print[tab]

A300360 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that x or y is a power of 2 (including 1) and x + 63*y = 2^(2k+1) for some k = 0,1,2,....

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 3, 4, 2, 2, 4, 1, 2, 1, 1, 2, 4, 3, 1, 1, 2, 1, 6, 2, 2, 2, 5, 1, 4, 1, 2, 6, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 2, 1, 7, 3, 1, 4, 1, 2, 8, 1, 3, 7, 3, 4, 6, 3, 4, 4, 6, 4, 3, 2, 4, 3, 1, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 03 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 5, 13, 25, 29, 59, 61, 79, 91, 95, 101, 103, 1315, 2^k (k = 1,2,3,...), 2^(2k+1)*m (k = 0,1,2,... and m = 3, 5, 7, 11, 15, 19, 23).
Note the difference between the current sequence and A300356.
In the comments of A300219, the author conjectured that a positive square n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and x + 3*y are powers of 4 unless n has the form 4^k*81503 with k a nonnegative integer. Since 81503^2 = 208^2 + 16^2 + 51167^2 + 63440^2 with 16 = 4^2 and 208 + 3*16 = 4^4, this implies that any positive square can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or y is a power of 4 and x + 3y is also a power of 4. We also conjecture that for any positive integer n not of the form 4^k*m (k =0,1,... and m = 2, 7) we can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or y is a power of 4 and x + 2*y is also a power of 4.

Examples

			a(38) = 1 since 38^2 = 2^2 + 0^2 + 12^2 + 36^2 with 2 = 2^1 and 2 + 63*0 = 2^1.
a(86) = 2 since 86 = 65^2 + 1^2 + 19^2 + 53^2 = 65^2 + 1^2 + 31^2 + 47^2 with 1 = 2^0 and 65 + 63*1 = 2^7.
a(535) = 3 since 535^2 = 2^2 + 130^2 + 64^2 + 515^2 = 2^2 + 130^2 + 139^2 + 500^2 = 8^2 + 520^2 + 40^2 + 119^2 with 2 = 2^1, 8 = 2^3, 2 + 63*130 = 2^13 and 8 + 63*520 = 2^15.
a(1315) = 1 since 1315^2 = 512^2 + 512^2 + 61^2 + 1096^2 with 512 = 2^9 and 512 + 63*512 = 2^15.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[a_,n_]:=Pow[a,n]=IntegerQ[Log[a,n]];
    tab={};Do[r=0;Do[If[SQ[n^2-x^2-y^2-z^2]&&(Pow[2,x]||Pow[2,y])&&Pow[4,(x+63y)/2],r=r+1],{x,0,n},{y,0,Sqrt[n^2-x^2]},{z,0,Sqrt[(n^2-x^2-y^2)/2]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A301579 Least nonnegative integer k such that n^2 - 3*2^k can be written as x^2 + 2*y^2 with x and y integers, or -1 if no such k exists.

Original entry on oeis.org

-1, 0, 0, 2, 0, 0, 1, 4, 1, 0, 0, 2, 0, 0, 1, 6, 1, 0, 0, 2, 0, 2, 1, 4, 1, 0, 0, 2, 0, 3, 3, 8, 1, 0, 3, 2, 0, 0, 3, 4, 1, 0, 1, 4, 0, 0, 1, 6, 3, 0, 0, 2, 1, 0, 1, 4, 3, 0, 1, 5, 0, 5, 1, 10, 1, 0, 0, 2, 3, 0, 4, 4, 1, 2, 0, 2, 0, 0, 3, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 23 2018

Keywords

Comments

The Square Conjecture in A301471 implies that a(n) >= 0 for all n > 1.
It is known that a positive integer n has the form x^2 + 2*y^2 with x and y integers if and only if the p-adic order of n is even for any prime p == 5 or 7 (mod 8).
Numbers t such that a(t) = 0 are 2, 3, 5, 6, 10, 11, 13, 14, 18, 19, 21, 26, 27, 29, 34, 37, ... - Altug Alkan, Mar 26 2018

Examples

			a(1) = -1 since 1^2 - 3*2^k < 0 for all k = 0,1,2,....
a(31) = 3 since 31^2 - 3*2^3 = 17^2 + 2*18^2.
a(2^k) = 2*k - 2 for all k = 1,2,3,..., because (2^k)^2 - 3*2^(2*k-2) = (2^(k-1))^2 + 2*0^2, and (2^k)^2 - 3*2^j = 2^j*(2^(2*k-j) - 3) with 0 <= j < 2*k-2 cannot be written as x^2 + 2*y^2 with x and y integers.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n],i],1],8]==5||Mod[Part[Part[f[n],i],1],8]==7)&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[Do[If[QQ[n^2-3*2^k],tab=Append[tab,k];Goto[aa]],{k,0,Log[2,n^2/3]}];tab=Append[tab,-1];Label[aa],{n,1,80}];Print[tab]

A301640 Largest integer k such that n^2 - 3*2^k can be written as x^2 + 2*y^2 with x and y integers, or -1 if no such k exists.

Original entry on oeis.org

-1, 0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 7, 7, 7, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 8, 9, 9, 7, 9, 7, 9, 9, 8, 9, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 10, 9, 10, 10, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 25 2018

Keywords

Comments

Conjecture: a(n) > 0.6*log_2(log_2 n) for all n > 2, and also lim inf_{n->infinity} a(n)/(log n) = 0.
The author's Square Conjecture in A301471 would imply that a(n) >= 0 for all n > 1. We have verified that a(n) > 0.6*log_2(log_2 n) for all n = 3..4*10^9. For n = 2857932461, we have a(n) = 3 and 0.603 < a(n)/log_2(log_2 n) < 0.604.
It is known that a positive integer n has the form x^2 + 2*y^2 with x and y integers if and only if the p-adic order of n is even for any prime p == 5 or 7 (mod 8).

Examples

			a(2) = 0 since 2^2 - 3*2^0 = 1^2 + 2*0^2.
a(3) = 1 since 3^2 - 3*2^1 = 2^2 + 2*1^2.
a(5) = 3 since 5^2 - 3*2^3 = 1^2 + 2*0^2.
a(6434567) = 10 since 6434567^2 - 3*2^10 = 5921293^2 + 2*1780722^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,t;
        for k from floor(log[2](n^2/3)) by -1 to 0 do
           if g(n^2 - 3*2^k) then return k fi
        od;
        -1
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 26 2018
  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n],i],1],8]==5||Mod[Part[Part[f[n],i],1],8]==7)&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[Do[If[QQ[n^2-3*2^(Floor[Log[2,n^2/3]]-k)],tab=Append[tab,Floor[Log[2,n^2/3]]-k];Goto[aa]],{k,0,Log[2,n^2/3]}];tab=Append[tab,-1];Label[aa],{n,1,70}];Print[tab]

A303235 Number of ordered pairs (x, y) with 0 <= x <= y such that n - 2^x - 2^y can be written as the sum of two triangular numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 4, 5, 6, 6, 6, 8, 7, 7, 8, 8, 8, 10, 10, 10, 10, 9, 9, 11, 9, 10, 11, 10, 9, 12, 10, 11, 14, 13, 11, 14, 12, 12, 13, 15, 12, 14, 12, 13, 14, 14, 14, 15, 13, 11, 14, 13, 11, 16, 13, 10, 11, 13, 11, 14
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 20 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
Note that a nonnegative integer m is the sum of two triangular numbers if and only if 4*m+1 (or 8*m+2) can be written as the sum of two squares.
We have verified a(n) > 0 for all n = 2..4*10^8. See also the related sequences A303233 and A303234.

Examples

			a(2) = 1 with 2 - 2^0 - 2^0 = 0*(0+1)/2 + 0*(0+1)/2.
a(3) = 2 with 3 - 2^0 - 2^0 = 0*(0+1)/2 + 1*(1+1)/2 and 3 - 2^0 - 2^1 = 0*(0+1)/2 + 0*(0+1)/2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-2^k-2^j)+1],r=r+1],{k,0,Log[2,n]-1},{j,k,Log[2,n-2^k]}];tab=Append[tab,r],{n,1,60}];Print[tab]
Previous Showing 21-30 of 36 results. Next