A300351
Triangle whose n-th row lists in order all Heinz numbers of integer partitions of n into odd parts.
Original entry on oeis.org
1, 2, 4, 5, 8, 10, 16, 11, 20, 32, 22, 25, 40, 64, 17, 44, 50, 80, 128, 34, 55, 88, 100, 160, 256, 23, 68, 110, 125, 176, 200, 320, 512, 46, 85, 121, 136, 220, 250, 352, 400, 640, 1024, 31, 92, 170, 242, 272, 275, 440, 500, 704, 800, 1280, 2048, 62, 115, 184
Offset: 1
Triangle of partitions into odd parts begins:
0
(1)
(11)
(3) (111)
(31) (1111)
(5) (311) (11111)
(51) (33) (3111) (111111)
(7) (511) (331) (31111) (1111111)
(71) (53) (5111) (3311) (311111) (11111111)
Cf.
A000009,
A031368,
A056239,
A066208,
A078408,
A215366,
A246867,
A299759,
A299757,
A300063,
A300272.
-
Table[Sort[Times@@Prime/@#&/@Select[IntegerPartitions[n],And@@OddQ/@#&]],{n,0,12}]
A341448
Heinz numbers of integer partitions of type OO.
Original entry on oeis.org
6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
6: (2,1) 74: (12,1) 141: (15,2)
14: (4,1) 77: (5,4) 142: (20,1)
15: (3,2) 86: (14,1) 143: (6,5)
24: (2,1,1,1) 93: (11,2) 145: (10,3)
26: (6,1) 95: (8,3) 150: (3,3,2,1)
33: (5,2) 96: (2,1,1,1,1,1) 152: (8,1,1,1)
35: (4,3) 104: (6,1,1,1) 158: (22,1)
38: (8,1) 106: (16,1) 161: (9,4)
51: (7,2) 119: (7,4) 177: (17,2)
54: (2,2,2,1) 122: (18,1) 178: (24,1)
56: (4,1,1,1) 123: (13,2) 185: (12,3)
58: (10,1) 126: (4,2,2,1) 201: (19,2)
60: (3,2,1,1) 132: (5,2,1,1) 202: (26,1)
65: (6,3) 135: (3,2,2,2) 204: (7,2,1,1)
69: (9,2) 140: (4,3,1,1) 209: (8,5)
Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by
A078408 (
A300272).
These partitions (for odd n) are counted by
A236914.
A340101 counts factorizations into odd factors.
Cf.
A000700,
A024429,
A027187,
A106529,
A117409,
A174725,
A257541,
A325134,
A339890,
A340102,
A340604.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
A341449
Heinz numbers of integer partitions into odd parts > 1.
Original entry on oeis.org
1, 5, 11, 17, 23, 25, 31, 41, 47, 55, 59, 67, 73, 83, 85, 97, 103, 109, 115, 121, 125, 127, 137, 149, 155, 157, 167, 179, 187, 191, 197, 205, 211, 227, 233, 235, 241, 253, 257, 269, 275, 277, 283, 289, 295, 307, 313, 331, 335, 341, 347, 353, 365, 367, 379, 389
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
1: () 97: (25) 197: (45) 307: (63)
5: (3) 103: (27) 205: (13,3) 313: (65)
11: (5) 109: (29) 211: (47) 331: (67)
17: (7) 115: (9,3) 227: (49) 335: (19,3)
23: (9) 121: (5,5) 233: (51) 341: (11,5)
25: (3,3) 125: (3,3,3) 235: (15,3) 347: (69)
31: (11) 127: (31) 241: (53) 353: (71)
41: (13) 137: (33) 253: (9,5) 365: (21,3)
47: (15) 149: (35) 257: (55) 367: (73)
55: (5,3) 155: (11,3) 269: (57) 379: (75)
59: (17) 157: (37) 275: (5,3,3) 389: (77)
67: (19) 167: (39) 277: (59) 391: (9,7)
73: (21) 179: (41) 283: (61) 401: (79)
83: (23) 187: (7,5) 289: (7,7) 415: (23,3)
85: (7,3) 191: (43) 295: (17,3) 419: (81)
Note: A-numbers of ranking sequences are in parentheses below.
These partitions are counted by
A087897.
The version for factorizations is
A340101.
A112798 lists the prime indices of each positive integer.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[#]&&OddQ[Times@@primeMS[#]]&]
Comments