A301579 Least nonnegative integer k such that n^2 - 3*2^k can be written as x^2 + 2*y^2 with x and y integers, or -1 if no such k exists.
-1, 0, 0, 2, 0, 0, 1, 4, 1, 0, 0, 2, 0, 0, 1, 6, 1, 0, 0, 2, 0, 2, 1, 4, 1, 0, 0, 2, 0, 3, 3, 8, 1, 0, 3, 2, 0, 0, 3, 4, 1, 0, 1, 4, 0, 0, 1, 6, 3, 0, 0, 2, 1, 0, 1, 4, 3, 0, 1, 5, 0, 5, 1, 10, 1, 0, 0, 2, 3, 0, 4, 4, 1, 2, 0, 2, 0, 0, 3, 6
Offset: 1
Keywords
Examples
a(1) = -1 since 1^2 - 3*2^k < 0 for all k = 0,1,2,.... a(31) = 3 since 31^2 - 3*2^3 = 17^2 + 2*18^2. a(2^k) = 2*k - 2 for all k = 1,2,3,..., because (2^k)^2 - 3*2^(2*k-2) = (2^(k-1))^2 + 2*0^2, and (2^k)^2 - 3*2^j = 2^j*(2^(2*k-j) - 3) with 0 <= j < 2*k-2 cannot be written as x^2 + 2*y^2 with x and y integers.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n]; g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n],i],1],8]==5||Mod[Part[Part[f[n],i],1],8]==7)&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0; QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]); tab={};Do[Do[If[QQ[n^2-3*2^k],tab=Append[tab,k];Goto[aa]],{k,0,Log[2,n^2/3]}];tab=Append[tab,-1];Label[aa],{n,1,80}];Print[tab]
Comments