cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A321126 T(n,k) = max(n + k - 1, n + 1, k + 1), square array read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 4, 5, 6, 7, 6, 5, 5, 5, 6, 7, 8, 7, 6, 6, 6, 6, 7, 8, 9, 8, 7, 7, 7, 7, 7, 8, 9, 10, 9, 8, 8, 8, 8, 8, 8, 9, 10, 11, 10, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13
Offset: 0

Views

Author

Keywords

Comments

T(n,k) - 1 is the maximum degree of d in the three-variable bracket polynomial (A,B,d) for the two-bridge knot with Conway's notation C(n,k). Hence, T(n,k) is the maximum number of Jordan curves that are obtained by splitting the crossings of such knot diagram.

Examples

			Square array begins:
    1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
    2,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
    3,  3,  3,  4,  5,  6,  7,  8,  9, 10, ...
    4,  4,  4,  5,  6,  7,  8,  9, 10, 11, ...
    5,  5,  5,  6,  7,  8,  9, 10, 11, 12, ...
    6,  6,  6,  7,  8,  9, 10, 11, 12, 13, ...
    7,  7,  7,  8,  9, 10, 11, 12, 13, 14, ...
    8,  8,  8,  9, 10, 11, 12, 13, 14, 15, ...
    9,  9,  9, 10, 11, 12, 13, 14, 15, 16, ...
   10, 10, 10, 11, 12, 13, 14, 15, 16, 17, ...
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

T(n,1) = degree of the (n+1)-th row polynomial in A300453.
T(n,k) = degree of the n-th row polynomials in A300454 and A321127, k = 2,n, respectively.

Programs

  • Mathematica
    Table[Max[k + 1, n - 1, n - k + 1], {n, 0, 10}, {k, 0, n}] // Flatten
  • Maxima
    create_list(max(k + 1, n - 1, n - k + 1), n, 0, 10, k, 0, n);

Formula

T(n,k) = T(k,n).
T(n,k) = A051125(n+1,k+1) for 0 <= k <= 2, n >= 0, and T(n,k) = A051125(n+1,k+1) + A003983(n-2,k-2) for k >= 3, n >= 3.
T(n,n) = A004280(n+1).
G.f.: (1 - (2*x - x^2)*y + (x - 2*x^2 + x^3)*y^2 + (x^2 - x^3)*y^3)/(((1 - x)*(1 - y))^2).

A320531 T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of length n*k binary words of n consecutive blocks of length k, respectively, one of the blocks having exactly k letters 1, and the other having exactly one letter 0. First column follows from the next definition.
In Kauffman's language, T(n,k) is the total number of Jordan trails that are obtained by placing state markers at the crossings of the Pretzel universe P(k, k, ..., k) having n tangles, of k half-twists respectively. In other words, T(n,k) is the number of ways of splitting the crossings of the Pretzel knot shadow P(k, k, ..., k) such that the final diagram is a single Jordan curve. The aforementionned binary words encode these operations by assigning each tangle a length k binary words with the adequate choice for splitting the crossings.
Columns are linear recurrence sequences with signature (2*k, -k^2).

Examples

			Square array begins:
    0, 0,   0,    0,     0,      0,      0,      0, ...
    1, 1,   1,    1,     1,      1,      1,      1, ...
    0, 2,   4,    6,     8,     10,     12,     14, ... A005843
    0, 3,  12,   27,    48,     75,    108,    147, ... A033428
    0, 4,  32,  108,   256,    500,    864,   1372, ... A033430
    0, 5,  80,  405,  1280,   3125,   6480,  12005, ... A269792
    0, 6, 192, 1458,  6144,  18750,  46656, 100842, ...
    0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
    ...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Antidiagonal sums: A101495.
Column 1 is column 2 of A300453.
Column 2 is column 1 of A300184.

Programs

  • Mathematica
    T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
    Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
  • Maxima
    T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$

Formula

T(n,k) = (2*k)*T(n-1,k) - (k^2)*T(n-2,k).
G.f. for columns: x/(1 - k*x)^2.
E.g.f. for columns: x*exp(k*x).
T(n,1) = A001477(n).
T(n,2) = A001787(n).
T(n,3) = A027471(n+1).
T(n,4) = A002697(n).
T(n,5) = A053464(n).
T(n,6) = A053469(n), n > 0.
T(n,7) = A027473(n), n > 0.
T(n,8) = A053539(n).
T(n,9) = A053540(n), n > 0.
T(n,10) = A053541(n), n > 0.
T(n,11) = A081127(n).
T(n,12) = A081128(n).

A386874 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (1/(2*w)) * (x^2 + x) * ((((v + w)/2)^(n - 1)) * (x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1)) * (x^2 + 2*x + 4 - w)), where v = x^2 + 4*x + 4 and w = sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12).

Original entry on oeis.org

0, 1, 1, 0, 4, 7, 4, 1, 0, 15, 40, 42, 23, 7, 1, 0, 56, 201, 306, 262, 140, 48, 10, 1, 0, 209, 943, 1877, 2189, 1672, 881, 325, 82, 13, 1, 0, 780, 4239, 10412, 15368, 15276, 10841, 5660, 2194, 624, 125, 16, 1, 0, 2911, 18506, 54051, 96501, 118175, 105495
Offset: 1

Views

Author

Keywords

Comments

T(n,k) is the number of ways to assign horizontal or vertical barriers at each interior construction dot of the 4 X 2n barrier-free Celtic shadow diagram CK_4^(2n) such that the resulting design consists of exactly k connected components.
The n-th row is the coefficients in the expansion of the Kauffman bracket polynomial for the shadow of the Celtic link CK_4^(2n).

Examples

			The triangle T(n,k) begins:
  n\k 0    1     2     3     4     5       6     7     8     9   10   11  12 13 14
  1:  0    1     1
  2:  0    4     7     4     1
  3:  0   15    40    42    23      7      1
  4:  0   56   201   306   262    140     48    10     1
  5:  0  209   943  1877  2189   1672    881   325    82    13    1
  6:  0  780  4239 10412 15368  15276  10841  5660  2194   624  125   16   1
  7:  0 2911 18506 54051 96501 118175 105495 71107 36885 14817 4579 1064 177 19  1
  ...
		

Crossrefs

Programs

  • Mathematica
    With[{nmax = 15}, CoefficientList[CoefficientList[Series[x*y*(x + 1)*(1 - x*y)/(1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2), {x, 0, 2*nmax}, {y, 0, nmax}], y], x]] // Flatten
  • Maxima
    nmax: 15$ v: x^2 + 4*x + 4$ w: sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12)$
    p(n, x) := expand((1/(2*w))*(x^2 + x)*((((v + w)/2)^(n - 1))*(x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1))*(x^2 + 2*x + 4 - w)))$
    create_list(ratcoef(p(n, x), x, k), n, 1, nmax, k, 0, 2*n);

Formula

T(n,1) = A001353(n).
G.f.: x*y*(x + 1)*(1 - x*y) / (1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2).
Previous Showing 11-13 of 13 results.