cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A316398 Number of distinct subset-averages of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 5, 2, 4, 4, 2, 2, 5, 2, 5, 4, 4, 2, 6, 2, 4, 2, 5, 2, 6, 2, 2, 4, 4, 4, 6, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 7, 2, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 9, 2, 4, 5, 2, 4, 8, 2, 5, 4, 8, 2, 8, 2, 4, 5, 5, 4, 8, 2, 7, 2, 4, 2, 9, 4, 4, 4, 6, 2, 8, 4, 5, 4, 4, 4, 8, 2, 5, 5, 6, 2, 8, 2, 6, 6
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2018

Keywords

Comments

Although the average of an empty set is technically indeterminate, we consider it to be distinct from the other subset-averages.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(60) = 9 distinct subset-averages of (3,2,1,1) are 0/0, 1, 4/3, 3/2, 5/3, 7/4, 2, 5/2, 3.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Mean/@Subsets[primeMS[n]]]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A316398(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s = A056239(d)/bigomega(d)), mapput(m,s,s); k++)); (1+k); }; \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A316314(n) + 1.

Extensions

More terms from Antti Karttunen, Sep 23 2018

A319328 Heinz numbers of integer partitions such that not every distinct submultiset has a different GCD but every distinct submultiset has a different LCM.

Original entry on oeis.org

165, 255, 385, 465, 561, 595, 615, 759, 885, 935, 1001, 1005, 1015, 1023, 1045, 1085, 1173, 1245, 1309, 1353, 1435, 1455, 1505, 1547, 1581, 1615, 1635, 1705, 1771, 1905, 1947, 2065, 2091, 2139, 2211, 2235, 2255, 2345, 2355, 2365, 2387, 2397, 2409, 2431, 2465
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The first term of this sequence absent from A302696 (numbers whose prime indices are pairwise coprime) is 1001 with prime indices {4,5,6}.

Examples

			The sequence of partitions whose Heinz numbers belong to this sequence begins (5,3,2), (7,3,2), (5,4,3), (11,3,2), (7,5,2), (7,4,3), (13,3,2), (9,5,2), (17,3,2), (7,5,3).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],UnsameQ@@primeMS[#]&&And[!UnsameQ@@GCD@@@Union[Rest[Subsets[primeMS[#]]]],UnsameQ@@LCM@@@Union[Rest[Subsets[primeMS[#]]]]]&]

A325777 Heinz numbers of integer partitions whose distinct consecutive subsequences do not have different sums.

Original entry on oeis.org

12, 24, 30, 36, 40, 48, 60, 63, 70, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 150, 154, 156, 160, 165, 168, 180, 189, 192, 198, 200, 204, 210, 216, 220, 224, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 320, 324, 325, 330
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

First differs from A299729 in lacking 462.
This sequence does not contain all multiples of its elements. For example, it contains 154 (with prime indices {1,4,5}) but not 462 (with prime indices {1,2,4,5}).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{_,s__,_}:>{s}]]&]

A334268 Number of compositions of n where every distinct subsequence (not necessarily contiguous) has a different sum.

Original entry on oeis.org

1, 1, 2, 4, 5, 10, 10, 24, 24, 43, 42, 88, 72, 136, 122, 242, 213, 392, 320, 630, 490, 916, 742, 1432, 1160, 1955, 1604, 2826, 2310, 3850, 2888, 5416, 4426, 7332, 5814, 10046, 7983, 12946, 10236, 17780, 14100, 22674, 17582, 30232, 23674, 37522, 29426, 49832
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The contiguous case is A325676.

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,2)    (1,3)      (1,4)        (1,5)
              (2,1)    (2,2)      (2,3)        (2,4)
              (1,1,1)  (3,1)      (3,2)        (3,3)
                       (1,1,1,1)  (4,1)        (4,2)
                                  (1,1,3)      (5,1)
                                  (1,2,2)      (1,1,4)
                                  (2,2,1)      (2,2,2)
                                  (3,1,1)      (4,1,1)
                                  (1,1,1,1,1)  (1,1,1,1,1,1)
		

Crossrefs

These compositions are ranked by A334967.
Compositions where every restriction to a subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and A325592 and ranked by A299702, while the strict case is counted by A275972 and ranked by A059519 and A301899.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1, add((h->
          `if`(nops(h)=nops(map(l-> add(i, i=l), h)),
           b(n-j, h), 0))({s[], map(l-> [l[], j], s)[]}), j=1..n))
        end:
    a:= n-> b(n, {[]}):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 03 2020
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Total/@Union[Subsets[#]]&]],{n,0,15}]

Extensions

a(18)-a(47) from Alois P. Heinz, Jun 03 2020

A316361 FDH numbers of strict integer partitions such that not every distinct subset has a different average.

Original entry on oeis.org

24, 56, 60, 110, 120, 135, 140, 168, 210, 216, 224, 264, 270, 273, 280, 308, 312, 315, 330, 342, 360, 378, 384, 408, 420, 440, 456, 459, 480, 504, 520, 540, 546, 550, 552, 576, 585, 594, 600, 616, 630, 660, 672, 693, 696, 702, 728, 744, 756, 759, 760, 770, 780
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			210 is the FDH number of (5,4,2,1), and the subsets {1,5}, and {2,4} have the same average, so 210 belongs to the data.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],!UnsameQ@@Mean/@Union[Subsets[FDfactor[#]/.FDrules]]&]

A316362 Heinz numbers of strict integer partitions such that not every distinct subset has a different average.

Original entry on oeis.org

30, 105, 110, 210, 238, 273, 330, 385, 390, 462, 506, 510, 546, 570, 627, 690, 714, 770, 806, 858, 870, 910, 930, 935, 966, 1001, 1110, 1131, 1155, 1190, 1230, 1254, 1290, 1326, 1330, 1365, 1394, 1410, 1430, 1482, 1495, 1518, 1590, 1729, 1770, 1785, 1786, 1794
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			462 is the Heinz number of (5,4,2,1), and the subsets {1,5}, and {2,4} have the same average, so 462 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[3000],SquareFreeQ[#]&&!UnsameQ@@Mean/@Union[Subsets[primeMS[#]]]&]

A316401 Number of strict integer partitions of n that are not knapsack (not every subset has a different sum) but every subset has a different average.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1, 3, 2, 4, 2, 6, 6, 11, 9, 9, 10, 20, 16, 18, 17, 27, 24, 31, 29, 43, 31, 43, 40, 59, 52, 58, 61, 83, 68, 93, 80, 124, 99, 120, 109, 145, 151, 185, 160, 232, 163, 257, 229, 314, 280, 286, 310, 427, 385, 513, 333, 596
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2018

Keywords

Examples

			The a(22) = 11 partitions:
(11,6,5), (11,7,4), (11,8,3), (11,9,2), (11,10,1),
(11,5,4,2), (11,6,3,2), (11,8,2,1), (12,5,3,2), (12,5,4,1), (14,4,3,1).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!UnsameQ@@Total/@Union[Subsets[#]]&&UnsameQ@@Mean/@Union[Subsets[#]]&]],{n,20}]
Previous Showing 21-27 of 27 results.