A302198 Hurwitz logarithm of squares [1,4,9,16,...].
0, 4, -7, 36, -282, 2952, -38640, 606960, -11123280, 232968960, -5489285760, 143711366400, -4138653657600, 130021631308800, -4425213650457600, 162195036421017600, -6369481772349696000, 266808316331741184000, -11874725090839683072000
Offset: 0
Keywords
Links
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885.
Crossrefs
Cf. A302189.
Programs
-
Maple
# first load Maple commands for Hurwitz operations from link in A302189. s:=[seq(n^2,n=1..30)]; Hlog(s);
-
Sage
A = PowerSeriesRing(QQ, 'x') f = A([i**2 for i in range(1,30)]).ogf_to_egf().log() print(list(f.egf_to_ogf())) # F. Chapoton, Apr 11 2020
Formula
E.g.f. is log of Sum_{n >= 0} (n+1)^2*x^n/n!.
Comments