A319877
Numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).
Original entry on oeis.org
1, 7, 9, 14, 18, 23, 25, 28, 36, 46, 50, 56, 72, 92, 97, 100, 112, 121, 144, 151, 161, 169, 175, 183, 184, 185, 194, 195, 200, 207, 224, 225, 227, 242, 288, 289, 302, 322, 338, 350, 366, 368, 370, 388, 390, 400, 414, 448, 450, 454, 484, 541, 576, 578, 604, 644
Offset: 1
The sequence of multiset multisystems whose MM-numbers belong to the sequence begins:
1: {}
7: {{1,1}}
9: {{1},{1}}
14: {{},{1,1}}
18: {{},{1},{1}}
23: {{2,2}}
25: {{2},{2}}
28: {{},{},{1,1}}
36: {{},{},{1},{1}}
46: {{},{2,2}}
50: {{},{2},{2}}
56: {{},{},{},{1,1}}
72: {{},{},{},{1},{1}}
92: {{},{},{2,2}}
97: {{3,3}}
100: {{},{},{2},{2}}
112: {{},{},{},{},{1,1}}
121: {{3},{3}}
144: {{},{},{},{},{1},{1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
175: {{2},{2},{1,1}}
183: {{1},{1,2,2}}
184: {{},{},{},{2,2}}
185: {{2},{1,1,2}}
194: {{},{3,3}}
195: {{1},{2},{1,2}}
200: {{},{},{},{2},{2}}
Cf.
A003963,
A005117,
A005176,
A062503,
A064573,
A072774,
A295193,
A302505,
A319878,
A319899,
A320325,
A322526,
A322527,
A322530.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]
A319878
Odd numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).
Original entry on oeis.org
1, 7, 9, 23, 25, 97, 121, 151, 161, 169, 175, 183, 185, 195, 207, 225, 227, 289, 541, 661, 679, 687, 781, 841, 847, 873, 957, 961, 1009, 1089, 1193, 1427, 1563, 1589, 1681, 1819, 1849, 1879, 1895, 2023, 2043, 2167, 2193, 2209, 2231, 2425, 2437, 2585, 2601
Offset: 1
The sequence of multiset partitions whose MM-numbers belong to the sequence begins:
1: {}
7: {{1,1}}
9: {{1},{1}}
23: {{2,2}}
25: {{2},{2}}
97: {{3,3}}
121: {{3},{3}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
175: {{2},{2},{1,1}}
183: {{1},{1,2,2}}
185: {{2},{1,1,2}}
195: {{1},{2},{1,2}}
207: {{1},{1},{2,2}}
225: {{1},{1},{2},{2}}
227: {{4,4}}
289: {{4},{4}}
541: {{1,1,3,3}}
661: {{5,5}}
679: {{1,1},{3,3}}
687: {{1},{1,3,3}}
781: {{3},{1,1,3}}
841: {{1,3},{1,3}}
847: {{1,1},{3},{3}}
873: {{1},{1},{3,3}}
957: {{1},{3},{1,3}}
961: {{5},{5}}
Cf.
A003963,
A005117,
A005176,
A062503,
A064573,
A072774,
A295193,
A302505,
A319877,
A319899,
A320325,
A322526,
A322527,
A322530.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1,100,2],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]
A322846
Squarefree numbers whose prime indices have no equivalent primes.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 22, 23, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 46, 51, 53, 55, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 74, 77, 78, 82, 83, 85, 87, 89, 91, 93, 95, 97, 102, 103, 105, 106, 107, 109, 110, 111, 114, 115, 118, 119
Offset: 1
The sequence of all strict T_0 multiset multisystems together with their MM-numbers begins:
1: {}
2: {{}}
3: {{1}}
5: {{2}}
6: {{},{1}}
7: {{1,1}}
10: {{},{2}}
11: {{3}}
14: {{},{1,1}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
35: {{2},{1,1}}
37: {{1,1,2}}
38: {{},{1,1,1}}
39: {{1},{1,2}}
Cf.
A000009,
A005117,
A056239,
A059201,
A112798,
A302242,
A302505,
A316978,
A316979,
A316983,
A319558,
A319564,
A319728,
A322847.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Select[Range[100],And[SquareFreeQ[#],UnsameQ@@dual[primeMS/@primeMS[#]]]&]
A357458
First differences of A325033 = "Sum of sums of the multiset of prime indices of each prime index of n.".
Original entry on oeis.org
0, 1, -1, 2, -1, 1, -2, 2, 0, 1, -2, 2, -1, 1, -3, 4, -2, 1, -1, 1, 0, 1, -3, 3, -1, 0, -1, 2, -1, 2, -5, 4, 0, 0, -2, 2, -1, 1, -2, 4, -3, 2, -2, 1, 0, 1, -4, 3, 0, 1, -2, 1, -1, 2, -3, 2, 0, 3, -4, 2, 0, -1, -4, 5, -1, 4, -4, 1, -1, 1, -3, 4, -2, 1, -2, 2
Offset: 1
We have A325033(5) - A325033(4) = 2 - 0, so a(4) = 2.
The version for standard compositions is
A357187.
Cf.
A000720,
A001221,
A001222,
A007716,
A109082,
A275024,
A302242,
A302243,
A302505,
A324926,
A325034,
A357139.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Differences[Table[Plus@@Join@@primeMS/@primeMS[n],{n,100}]]
A357188
Numbers with (WLOG adjacent) prime indices x <= y such that the greatest prime factor of x is greater than the least prime factor of y.
Original entry on oeis.org
35, 65, 70, 95, 105, 130, 140, 143, 145, 169, 175, 185, 190, 195, 209, 210, 215, 245, 247, 253, 260, 265, 280, 285, 286, 290, 305, 315, 319, 323, 325, 338, 350, 355, 370, 377, 380, 385, 390, 391, 395, 407, 418, 420, 429, 430, 435, 445, 455, 473, 475, 481, 490
Offset: 1
The terms and corresponding multisets of multisets:
35: {{2},{1,1}}
65: {{2},{1,2}}
70: {{},{2},{1,1}}
95: {{2},{1,1,1}}
105: {{1},{2},{1,1}}
130: {{},{2},{1,2}}
140: {{},{},{2},{1,1}}
143: {{3},{1,2}}
145: {{2},{1,3}}
169: {{1,2},{1,2}}
175: {{2},{2},{1,1}}
185: {{2},{1,1,2}}
These are the positions of non-weakly increasing rows in
A357139.
Cf.
A000720,
A001221,
A001222,
A007716,
A275024,
A302242,
A302243,
A302505,
A324926,
A325032,
A325034.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],MatchQ[primeMS[#],{_,x_,y_,_}/;Max@@primeMS[x]>Min@@primeMS[y]]&]
Select[Range[100],!LessEqual@@Join@@primeMS/@primeMS[#]&]
Comments