cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A338316 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 95, 97, 99, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 131, 135, 137, 139, 141, 143, 145, 149, 151
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. a(n) gives the n-th Heinz number of an integer partition with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime (A338317).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          33: {2,5}       71: {20}
      3: {2}         35: {3,4}       73: {21}
      5: {3}         37: {12}        75: {2,3,3}
      7: {4}         41: {13}        77: {4,5}
      9: {2,2}       43: {14}        79: {22}
     11: {5}         45: {2,2,3}     81: {2,2,2,2}
     13: {6}         47: {15}        83: {23}
     15: {2,3}       49: {4,4}       85: {3,7}
     17: {7}         51: {2,7}       89: {24}
     19: {8}         53: {16}        93: {2,11}
     23: {9}         55: {3,5}       95: {3,8}
     25: {3,3}       59: {17}        97: {25}
     27: {2,2,2}     61: {18}        99: {2,2,5}
     29: {10}        67: {19}       101: {26}
     31: {11}        69: {2,9}      103: {27}
		

Crossrefs

A338315 does not consider singletons coprime, with Heinz numbers A337987.
A338317 counts the partitions with these Heinz numbers.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A007359 counts singleton or pairwise coprime partitions with no 1's, with Heinz numbers A302568.
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A302797 lists squarefree numbers whose distinct parts are pairwise coprime.
A304709 counts partitions whose distinct parts are pairwise coprime, with Heinz numbers A304711.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337485 counts pairwise coprime partitions with no 1's, with Heinz numbers A337984.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    Select[Range[1,100,2],#==1||PrimePowerQ[#]||CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]

A338330 Numbers that are neither a power of a prime (A000961) nor is their set of distinct prime indices pairwise coprime.

Original entry on oeis.org

21, 39, 42, 57, 63, 65, 78, 84, 87, 91, 105, 111, 114, 115, 117, 126, 129, 130, 133, 147, 156, 159, 168, 171, 174, 182, 183, 185, 189, 195, 203, 210, 213, 222, 228, 230, 231, 234, 235, 237, 247, 252, 258, 259, 260, 261, 266, 267, 273, 285, 294, 299, 301
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2020

Keywords

Comments

Also Heinz numbers of partitions that are neither constant (A144300) nor have pairwise coprime distinct parts (A304709), hence the formula. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     21: {2,4}        126: {1,2,2,4}      203: {4,10}
     39: {2,6}        129: {2,14}         210: {1,2,3,4}
     42: {1,2,4}      130: {1,3,6}        213: {2,20}
     57: {2,8}        133: {4,8}          222: {1,2,12}
     63: {2,2,4}      147: {2,4,4}        228: {1,1,2,8}
     65: {3,6}        156: {1,1,2,6}      230: {1,3,9}
     78: {1,2,6}      159: {2,16}         231: {2,4,5}
     84: {1,1,2,4}    168: {1,1,1,2,4}    234: {1,2,2,6}
     87: {2,10}       171: {2,2,8}        235: {3,15}
     91: {4,6}        174: {1,2,10}       237: {2,22}
    105: {2,3,4}      182: {1,4,6}        247: {6,8}
    111: {2,12}       183: {2,18}         252: {1,1,2,2,4}
    114: {1,2,8}      185: {3,12}         258: {1,2,14}
    115: {3,9}        189: {2,2,2,4}      259: {4,12}
    117: {2,2,6}      195: {2,3,6}        260: {1,1,3,6}
		

Crossrefs

A338331 is the complement.
A304713 is the complement of the version for divisibility.

Programs

  • Mathematica
    Select[Range[2,100],!PrimePowerQ[#]&&!CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]

Formula

Equals A024619 \ A304711.
Previous Showing 11-12 of 12 results.