A304031 Number of ways to write 2*n as p + 2^k + 5^m with p prime and 2^k + 5^m a product of at most three distinct primes, where k and m are nonnegative integers.
0, 1, 1, 3, 3, 2, 2, 3, 3, 4, 3, 5, 4, 4, 3, 4, 5, 7, 4, 7, 4, 8, 7, 6, 7, 6, 5, 5, 5, 7, 5, 8, 5, 5, 8, 6, 9, 9, 6, 8, 6, 6, 7, 8, 4, 7, 8, 7, 3, 10, 6, 7, 8, 7, 7, 9, 5, 8, 7, 6, 5, 5, 6, 3, 11, 7, 9, 12, 8, 12, 10, 11, 11, 9, 7, 9, 7, 8, 8, 11, 7, 11, 8, 9, 15, 11, 8, 9, 8, 9
Offset: 1
Keywords
Examples
a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 = 2^1 + 5^0 prime. a(7) = 2 since 2*7 = 7 + 2^1 + 5^1 with 7 = 2^1 + 5^1 prime, and 2*7 = 11 + 2^1 + 5^0 with 11 and 2^1 + 5^0 both prime. a(42908) = 2 since 2*42908 = 85751 + 2^6 + 5^0 with 85751 prime and 2^6 + 5^0 = 5*13, and 2*42908 = 69431 + 2^14 + 5^0 with 69431 prime and 2^14 + 5^0 = 5*29*113.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
Crossrefs
Cf. A000040, A000079, A000351, A005117, A118955, A156695, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303656, A303660, A303702, A303821, A303932, A303934, A303949, A304032, A304081.
Programs
-
Mathematica
qq[n_]:=qq[n]=SquareFreeQ[n]&&Length[FactorInteger[n]]<=3; tab={};Do[r=0;Do[If[qq[2^k+5^m]&&PrimeQ[2n-2^k-5^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[5,2n-2^k]}];tab=Append[tab,r],{n,1,90}];Print[tab]
Comments