cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A305055 Numbers n such that the z-density of the integer partition with Heinz number n is 0.

Original entry on oeis.org

1, 169, 481, 507, 793, 841, 845, 1157, 1183, 1369, 1443, 1469, 1521, 1849, 1963, 2059, 2209, 2257, 2353, 2379, 2405, 2523, 2535, 2899, 3211, 3263, 3277, 3293, 3367, 3471, 3549, 3653, 3721, 3887, 3965, 4107, 4121, 4181, 4225, 4329, 4394, 4407, 4563, 4601, 4667
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)) where omega = A001221 is number of distinct prime factors.

Crossrefs

Programs

  • Mathematica
    zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]];
    Select[Range[1000],zens[#]==0&]

A323820 Number of non-isomorphic connected set-systems covering n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 6, 171, 611846, 200253853704319, 263735716028826427334553304608242, 5609038300883759793482640992086670066496449147691597380632107520565546
Offset: 0

Views

Author

Gus Wiseman, Jan 30 2019

Keywords

Comments

The labeled case is A323817.

Examples

			Non-isomorphic representatives of the a(3) = 6 set-systems:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Cf. A000295, A003465, A016031, A048143, A055621, A293510, A305001, A317795 (not necessarily connected), A323817 (unlabeled case), A323819 (with singletons).

Formula

Inverse Euler transform of A317795.

A326375 Number of intersecting antichains of subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).

Original entry on oeis.org

2, 2, 2, 3, 29, 1961, 1379274, 229755337550, 423295079757497714060
Offset: 0

Views

Author

Gus Wiseman, Jul 03 2019

Keywords

Comments

A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint.

Examples

			The a(4) = 29 antichains:
  {}
  {{}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,4},{2,4}}
  {{1,3},{1,4},{3,4}}
  {{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{2,3,4}}
  {{1,2},{1,4},{2,3,4}}
  {{1,2},{2,3},{1,3,4}}
  {{1,2},{2,4},{1,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,3},{1,2,4}}
  {{1,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{1,2,3}}
  {{1,4},{3,4},{1,2,3}}
  {{2,3},{2,4},{1,3,4}}
  {{2,3},{3,4},{1,2,4}}
  {{2,4},{3,4},{1,2,3}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

The case without empty edges is A326366.
Intersecting antichains are A326372.
Antichains of nonempty sets with empty intersection are A006126 or A307249.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n]],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],#=={}||Intersection@@#=={}&]],{n,0,4}]

Formula

a(n) = A326366(n) + 1.

Extensions

a(7)-a(8) from Andrew Howroyd, Aug 14 2019
Previous Showing 21-23 of 23 results.