cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A318115 Number of compositions of n into exactly n nonnegative parts <= seven.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1716, 6427, 24229, 91828, 349570, 1335698, 5119856, 19678452, 75814560, 292695291, 1132074847, 4385740683, 17015510820, 66102536360, 257103599280, 1001078753370, 3901733646660, 15220908863866, 59427261280126, 232201593611796
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2018

Keywords

Crossrefs

Column k=7 of A305161.
Cf. A088218.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i=0, 0, add(b(n-j, i-1), j=0..min(n, 7))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);

Formula

a(n) = [x^n] ((x^8-1)/(x-1))^n.
a(n) <= A088218(n) with equality only for n < 8.
a(n) = Sum_{k=0..floor(n/8)} (-1)^k * binomial(n,k) * binomial(2*n-8*k-1,n-8*k). - Ilya Gutkovskiy, Nov 03 2021

A318116 Number of compositions of n into exactly n nonnegative parts <= eight.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1716, 6435, 24301, 92278, 351990, 1347710, 5176640, 19938348, 76977360, 297811491, 1154300103, 4481325903, 17423296059, 67830758310, 264387659490, 1031636761290, 4029420952890, 15752622069630, 61634789550126, 241342568718696
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2018

Keywords

Crossrefs

Column k=8 of A305161.
Cf. A088218.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i=0, 0, add(b(n-j, i-1), j=0..min(n, 8))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);

Formula

a(n) = [x^n] ((x^9-1)/(x-1))^n.
a(n) <= A088218(n) with equality only for n < 9.
a(n) = Sum_{k=0..floor(n/9)} (-1)^k * binomial(n,k) * binomial(2*n-9*k-1,n-9*k). - Ilya Gutkovskiy, Nov 03 2021

A318117 Number of compositions of n into exactly n nonnegative parts <= ten.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352705, 1351934, 5199117, 20050460, 77512860, 300292131, 1165534689, 4531337778, 17642948675, 68785126410, 268497991905, 1049210943531, 4104103226699, 16068342973950, 62963565243876, 246913415221671
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2018

Keywords

Crossrefs

Column k=10 of A305161.
Cf. A088218.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i=0, 0, add(b(n-j, i-1), j=0..min(n, 10))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);

Formula

a(n) = [x^n] ((x^11-1)/(x-1))^n.
a(n) <= A088218(n) with equality only for n < 11.
a(n) = Sum_{k=0..floor(n/11)} (-1)^k * binomial(n,k) * binomial(2*n-11*k-1,n-11*k). - Ilya Gutkovskiy, Nov 03 2021

A348478 Number of compositions of n into exactly n nonnegative parts such that each positive i-th part has the same parity as i.

Original entry on oeis.org

1, 1, 1, 4, 7, 23, 55, 164, 407, 1235, 3051, 9432, 23431, 72989, 182624, 571384, 1436855, 4511979, 11387467, 35866100, 90782837, 286622226, 727226578, 2300578392, 5848776767, 18533394763, 47197285045, 149769168304, 381956145802, 1213526310665, 3098742448230
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2021

Keywords

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 1: [0,2].
a(3) = 4: [1,2,0], [0,2,1], [3,0,0], [0,0,3].
a(4) = 7: [1,2,1,0], [1,0,1,2], [3,0,1,0], [1,0,3,0], [0,2,0,2], [0,4,0,0], [0,0,0,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(t=0, 1-signum(n),
          add(`if`(j=0 or (t-j)::even, b(n-j, t-1), 0), j=0..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, t_] := b[n, t] = If[t == 0, 1 - Sign[n],
         Sum[If[j == 0 || EvenQ[t - j], b[n - j, t - 1], 0], {j, 0, n}]];
    a[n_] :=  b[n, n];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)
Previous Showing 11-14 of 14 results.