cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A353560 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j), A001065(i) = A001065(j) and A051953(i) = A051953(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A046523(n), A001065(n), A051953(n)].
For all i,j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A300232(i) = A300232(j), [Combining A046523 and A051953]
a(i) = a(j) => A300235(i) = A300235(j), [Combining A046523 and A001065]
a(i) = a(j) => A305895(i) = A305895(j), [Combining A001065 and A051953]
a(i) = a(j) => A353276(i) = A353276(j). [Needs all three components]

Crossrefs

Differs from A300235 for the first time at n=153, where a(153) = 110, while A300235(153) = 106.
Differs from A305895 for the first time at n=3283, where a(3283) = 2502, while A305895(3283) = 1845.
Differs from A327931 for the first time at n=4433, where a(4433) = 2950, while A327931(4433) = 3393.
Differs from A300249 and from A351260 for the first time at n=105, where a(105) = 75, while A300249(105) = A351260(105) = 56.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001065(n) = (sigma(n)-n);
    A051953(n) = (n-eulerphi(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux353560(n) = [A046523(n), A001065(n), A051953(n)];
    v353560 = rgs_transform(vector(up_to,n,Aux353560(n)));
    A353560(n) = v353560[n];

A353565 Lexicographically earliest infinite sequence such that a(i) = a(j) => A353564(i) = A353564(j), where A353564(n) = Product_{d|n, dA276086(phi(d)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 5, 6, 2, 7, 2, 8, 9, 7, 2, 10, 2, 11, 12, 10, 2, 13, 14, 15, 12, 16, 2, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 2, 26, 2, 22, 27, 28, 2, 29, 30, 31, 32, 33, 2, 34, 35, 36, 37, 26, 2, 38, 2, 39, 40, 41, 42, 43, 2, 44, 45, 46, 2, 47, 2, 48, 49, 50, 42, 51, 2, 52, 40, 53, 2, 54, 27, 55, 56, 47, 2, 57
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Comments

Restricted growth sequence transform of A353564.
For all i, j: A305800(i) = A305800(j) => a(i) = a(j) => A051953(i) = A051953(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A353564(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A276086(eulerphi(d)))); m; };
    v353565 = rgs_transform(vector(up_to,n,A353564(n)));
    A353565(n) = v353565[n];

A366297 Lexicographically earliest infinite sequence such that a(i) = a(j) => A359589(i) = A359589(j) for all i, j >= 1, where A359589 is Dirichlet inverse of function f(n) = (-1 + gcd(A003415(n), A276086(n))).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 4, 5, 2, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 7, 2, 2, 2, 7, 8, 4, 2, 2, 2, 2, 2, 9, 2, 5, 10, 2, 11, 6, 2, 2, 2, 2, 4, 4, 12, 2, 13, 9, 8, 7, 14, 2, 15, 6, 2, 6, 2, 2, 2, 2, 4, 4, 16, 17, 2, 2, 4, 6, 2, 2, 18, 2, 4, 3, 3, 17, 2, 2, 2, 18, 2, 2, 19, 6, 8, 6, 20, 2, 21, 6, 4, 6, 22, 5, 2, 2, 14, 8, 20, 2, 14, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 07 2023

Keywords

Comments

Restricted growth sequence transform of A359589.
For all i, j: A305800(i) = A305800(j) => a(i) = a(j) => A359595(i) = A359595(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n), A276086(n));
    v366297 = rgs_transform(DirInverseCorrect(vector(up_to,n,A327858(n)-1)));
    A366297(n) = v366297[n];

A373379 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A085731(i) = A085731(j) and A107463(i) = A107463(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37, 65, 66, 67, 68, 69, 2, 70, 71, 72
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2024

Keywords

Comments

Restricted growth sequence transform of the triple [A003415(n), A085731(n), A107463(n)].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A369051(i) = A369051(j),
a(i) = a(j) => A373363(i) = A373363(j),
a(i) = a(j) => A373364(i) = A373364(j).
Starts to differ from A300235 at n=153. - R. J. Mathar, Jun 06 2024

Crossrefs

Differs from A305895, A327931, and A353560 for the first time at n=1610, where a(1610) = 1112, while A305895(1610) = A327931(1610) = A353560(1610) = 1210.
Cf. also A373150, A373152, A373380.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A085731(n) = gcd(A003415(n),n);
    A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
    A107463(n) = if(n<=1,n,if(isprime(n),1,A001414(n)));
    Aux373379(n) = [A003415(n), A085731(n), A107463(n)];
    v373379 = rgs_transform(vector(up_to, n, Aux373379(n)));
    A373379(n) = v373379[n];

A373983 Lexicographically earliest infinite sequence such that a(i) = a(j) = A246277(A324886(i)) = A246277(A324886(j)) and A278226(A328768(i)) = A278226(A328768(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 5, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 12, 13, 14, 2, 15, 16, 6, 17, 18, 2, 19, 2, 20, 21, 22, 23, 24, 2, 25, 26, 27, 2, 28, 2, 29, 30, 31, 2, 32, 33, 34, 13, 35, 2, 36, 37, 38, 39, 40, 2, 41, 2, 8, 42, 43, 44, 45, 2, 29, 46, 47, 2, 48, 2, 49, 50, 51, 52, 53, 2, 54, 55, 56, 2, 57, 58, 14, 59, 60, 2, 61, 62, 63, 13, 64, 65, 66, 2, 67, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A246277(A276086(A108951(n))), A046523(A276086(A328768(n)))].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A329345(i) = A329345(j) => A329045(i) = A329045(j),
a(i) = a(j) => A373982(i) = A373982(j) => A328771(i) = A328771(j).
It is hard to say for sure which graphical features in the scatter plot have their provenance in A373982, and which ones in A329345.

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~,  prod(i=1, primepi(f[i, 1]), prime(i))^f[i, 2]); };
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A002110(n) = prod(i=1,n,prime(i));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    Aux373983(n) = [A246277(A276086(A108951(n))), A046523(A276086(A328768(n)))];
    v373983 = rgs_transform(vector(up_to, n, Aux373983(n)));
    A373983(n) = v373983[n];

A327162 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A034460(n) * (-1)^[A327159(n)>0], and A034460(n) = usigma(n)-n, with usigma the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 4, 2, 5, 6, 2, 2, 7, 2, 5, 8, 9, 2, 7, 2, 10, 2, 7, 2, 11, 2, 2, 12, 13, 14, 9, 2, 15, 16, 9, 2, 17, 2, 10, 12, 18, 2, 13, 2, 19, 20, 21, 2, 22, 16, 10, 23, 24, 2, 25, 2, 26, 16, 2, 27, 28, 2, 15, 29, 30, 2, 21, 2, 31, 32, 33, 27, 34, 2, 15, 2, 35, 2, 36, 23, 37, 38, 13, 2, 39, 20, 19, 40, 41, 42, 43, 2, 44, 20, 45, 2, 46, 2, 15
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Comments

For all i, j:
A305800(i) = A305800(j) => a(i) = a(j) => A318882(i) = A318882(j).

Crossrefs

Programs

  • PARI
    up_to = 87360;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A327159(n,orgn=n,xs=Set([])) = if(1==n,0,if(vecsearch(xs,n), if(n==orgn,length(xs),0), xs = setunion([n],xs); A327159(A034460(n),orgn,xs)));
    Aux327162(n) = A034460(n)*((-1)^((A327159(n)>0)));
    v327162 = rgs_transform(vector(up_to, n, Aux327162(n)));
    A327162(n) = v327162[n];

A327163 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = gcd(n,usigma(n)) * (-1)^[gcd(n,usigma(n))==n], and usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 5, 2, 4, 6, 2, 2, 7, 2, 8, 2, 4, 2, 9, 2, 4, 2, 5, 2, 7, 2, 2, 6, 4, 2, 4, 2, 4, 2, 4, 2, 7, 2, 5, 10, 4, 2, 5, 2, 4, 6, 4, 2, 7, 2, 11, 2, 4, 2, 12, 2, 4, 2, 2, 2, 7, 2, 4, 6, 4, 2, 13, 2, 4, 2, 5, 2, 7, 2, 4, 2, 4, 2, 5, 2, 4, 6, 5, 2, 14, 15, 5, 2, 4, 16, 9, 2, 4, 6, 8, 2, 7, 2, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Comments

Restricted growth sequence transform of function f, defined as f(n) = -A323166(n) = -n when n is one of unitary multiply-perfect numbers (A327158), otherwise f(n) = A323166(n) = gcd(n,A034448(n))
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j) => A327164(i) = A327164(j).

Crossrefs

Programs

  • PARI
    up_to = 87360;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323166(n) = gcd(n, A034448(n));
    Aux327163(n) = { my(u=A323166(n)); u*((-1)^(u==n)); };
    v327163 = rgs_transform(vector(up_to, n, Aux327163(n)));
    A327163(n) = v327163[n];

A328767 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where for n>1, f(n) = [A003415(i), A328382(i)], and f(1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 14, 17, 18, 19, 2, 20, 2, 21, 22, 23, 24, 25, 2, 26, 27, 28, 2, 29, 2, 30, 31, 32, 2, 33, 22, 34, 35, 36, 2, 37, 38, 39, 40, 41, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 46, 55, 2, 56, 57, 58, 2, 59, 60, 61, 62, 63, 2, 64, 65, 66, 67, 68, 69, 70, 2, 71, 72, 73, 2, 74, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Comments

For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A327858(i) = A327858(j),
a(i) = a(j) => A328098(i) = A328098(j),

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328382(n) = (A276086(n)%A003415(n));
    Aux328767(n) = if(1==n,1,[A003415(n), A328382(n)]);
    v328767 = rgs_transform(vector(up_to, n, Aux328767(n)));
    A328767(n) = v328767[n];

A373380 Lexicographically earliest infinite sequence such that a(i) = a(j) => A373145(i) = A373145(j), A373362(i) = A373362(j), and A373364(i) = A373364(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 2, 2, 12, 13, 14, 2, 2, 13, 15, 16, 17, 2, 2, 2, 18, 19, 20, 21, 22, 2, 23, 24, 2, 2, 25, 2, 26, 2, 27, 2, 28, 19, 29, 30, 31, 2, 2, 24, 2, 32, 33, 2, 3, 2, 34, 35, 36, 37, 2, 2, 12, 38, 2, 2, 39, 2, 40, 2, 41, 37, 42, 2, 28, 43, 44, 2, 45, 32, 46, 47, 2, 2, 2, 48, 26, 49, 50, 51, 2, 2, 2, 2, 52
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2024

Keywords

Comments

Restricted growth sequence transform of the triple [A373145(n), A373362(n), A373364(n)], i.e., the triple [gcd(x, y), gcd(x, z), gcd(y, z)], where x=A001414(n), y=A003415(n), z=A276085(n).
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A373367(i) = A373367(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1,primepi(f[k, 1]-1),prime(i))); };
    Aux373380(n) = { my(x=A001414(n), y=A003415(n), z=A276085(n)); [gcd(x, y), gcd(x, z), gcd(y, z)]; };
    v373380 = rgs_transform(vector(up_to, n, Aux373380(n)));
    A373380(n) = v373380[n];

A373988 Lexicographically earliest infinite sequence such that a(i) = a(j) => A373986(i) = A373986(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 2, 2, 8, 2, 9, 10, 11, 2, 2, 2, 12, 2, 13, 2, 14, 2, 6, 15, 16, 17, 2, 2, 18, 19, 4, 2, 20, 2, 21, 8, 22, 2, 8, 2, 23, 24, 25, 2, 6, 26, 27, 28, 29, 2, 2, 2, 30, 31, 4, 32, 33, 2, 34, 35, 36, 2, 2, 2, 37, 38, 39, 3, 40, 2, 14, 2, 41, 2, 38, 42, 43, 44, 15, 2, 38, 45, 46, 47, 48, 49, 2, 2, 50, 51, 17, 2, 52, 2, 19
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2024

Keywords

Comments

Restricted growth sequence transform of A373986.
For all i, j >= 1: A305800(i) = A305800(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A373986(n) = { my(f=factor(n),m=1,s=0); for(i=1, #f~, my(x=prod(i=1,primepi(f[i, 1]),prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); s/gcd(m,s); };
    v373988 = rgs_transform(vector(up_to, n, A373986(n)));
    A373988(n) = v373988[n];
Previous Showing 41-50 of 63 results. Next