cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A323480 Irregular triangle read by rows: T(n,k) (n>=1) = number of runs of length k (k>=1) in n-th generation of A306211.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 3, 5, 4, 9, 5, 1, 15, 6, 2, 1, 26, 7, 3, 3, 42, 9, 4, 7, 67, 12, 6, 12, 1, 108, 16, 11, 18, 3, 173, 21, 19, 26, 8, 277, 27, 31, 36, 19, 437, 35, 50, 49, 40, 684, 45, 83, 64, 77, 1067, 57, 144, 81, 136, 1661, 71, 255, 101, 226, 2588, 87
Offset: 1

Views

Author

N. J. A. Sloane, Jan 31 2019

Keywords

Examples

			Triangle begins:
1,
0, 1,
1, 1,
1, 2,
2, 3,
5, 4,
9, 5, 1,
15, 6, 2, 1,
26, 7, 3, 3,
42, 9, 4, 7,
67, 12, 6, 12, 1,
108, 16, 11, 18, 3,
...
		

Crossrefs

Extensions

a(23)-a(68) from Lars Blomberg, Feb 13 2019

A323826 RUNS transform of A306211.

Original entry on oeis.org

2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 5, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2019

Keywords

Crossrefs

Cf. A306211.

A323827 Apply Lenormand's "raboter" operation to A306211.

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2019

Keywords

Comments

The operation shortens each run of consecutive equal terms by one term (runs of length 1 vanish).

Crossrefs

Programs

  • PARI
    See Links section.

Extensions

More terms from Rémy Sigrist, Nov 11 2020

A323829 Position where n first appears in A306211, or -1 if n never appears.

Original entry on oeis.org

1, 3, 37, 60, 255
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2019

Keywords

Comments

If 6 does appear in A306211, this happens after term 10228800161220 (see comments in A306211).

Crossrefs

Cf. A306211.

A381587 a(1) = 1; thereafter the sequence is extended by iteratively appending the run length transform of the reverse of the sequence thus far.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3
Offset: 1

Views

Author

Neal Gersh Tolunsky, Feb 27 2025

Keywords

Comments

The run length transform replaces each run of consecutive equal values with a single value representing the length of that run.
Is 2 the greatest even number in the sequence?
It appears that the limit of the rows read in reverse equals A306346 (ignoring the initial terms). - Paul D. Hanna, Mar 03 2025

Examples

			Irregular triangle begins:
  1;
  1;
  2;
  1,2;
  1,1,1,2;
  1,3,1,1,1,2;
  1,3,1,1,1,3,1,1,1,2;
  1,3,1,3,1,1,1,3,1,1,1,3,1,1,1,2;
  1,3,1,3,1,3,1,1,1,1,1,3,1,3,1,1,1,3,1,1,1,3,1,1,1,2;
  ...
		

Crossrefs

Cf. A381357 (row lengths), A381358 (row sums), A381356 (limit of rows), A306346.
Cf. A306211.

Programs

  • PARI
    \\ From Paul D. Hanna, Mar 03 2025: (Start)
    \\ RUNS(V) Returns vector of run lengths in vector V:
    {RUNS(V) = my(R=[],c=1);if(#V>1, for(n=2,#V, if(V[n]==V[n-1], c=c+1, R=concat(R,c); c=1))); R=concat(R,c)}
    \\ REV(V) Reverses order of vector V:
    {REV(V) = Vec(Polrev(Ser(V)))}
    \\ Generates N rows as a vector A of row vectors
    {N=15; A=vector(N);A[1]=[1];A[2]=[1];A[3]=[2];
    for(n=3,#A-1, A[n+1] = concat(RUNS(REV(A[n])),A[n]);); A}
    for(n=1,N,print(A[n])) \\ Print N rows of this triangle (End)

A365836 a(1)=1; thereafter extend the sequence by appending its nonincreasing run transform, recompute the nonincreasing run transform, append it, and so on.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 2, 3, 1, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 3, 2, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 2, 2, 3, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 2, 3, 1, 2, 3, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Neal Gersh Tolunsky, Sep 19 2023

Keywords

Comments

The nonincreasing run transform replaces each run of weakly decreasing terms with a single value which is the length of that run.

Examples

			Irregular triangle in which each row (after the initial 1) is the nonincreasing run transform of the concatenation of the previous rows:
  1;
  1;
  2;
  2, 1;
  2, 3;
  2, 3, 1, 1;
  2, 3, 1, 2, 3;
  2, 3, 1, 2, 3, 1, 2, 1, 1;
  2, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 3;
  2, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 2, 2, 3, 1, 1;
  ...
		

Crossrefs

A365838 a(1)=2; thereafter extend the sequence by appending its nondecreasing run transform, recompute the nondecreasing run transform, append it, and so on.

Original entry on oeis.org

2, 1, 1, 1, 1, 3, 1, 5, 1, 5, 2, 1, 5, 2, 2, 1, 1, 5, 2, 2, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 2, 3, 2, 3, 1, 1, 5, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 4, 2, 1, 1, 5, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 4, 2, 3, 2, 4, 3, 2, 1, 1, 1, 5, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 4, 2, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Neal Gersh Tolunsky, Sep 20 2023

Keywords

Comments

The nondecreasing run transform replaces each run of weakly increasing terms with a single value which is the length of that run.

Examples

			Irregular triangle in which each row (after the initial 2) is the nondecreasing run transform of the concatenation of the previous rows:
  2;
  1;
  1, 1;
  1, 3;
  1, 5;
  1, 5, 2;
  1, 5, 2, 2, 1;
  1, 5, 2, 2, 1, 2, 2, 1;
  1, 5, 2, 2, 1, 2, 2, 3, 2, 3, 1;
  1, 5, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 4, 2, 1;
  ...
		

Crossrefs

A306216 Successive concatenation of the current sequence with the first differences of the sequence, a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 1, -1, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 2, -2, 2, -2, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 2, -2, 2, -2, 1, -1, 1, -1, 2, -2, 2, -2, 2, -2, 2, -2, 3, -4, 4, -4, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1
Offset: 1

Views

Author

Peter Kagey, Jan 29 2019

Keywords

Comments

n | generation | first differences
--+------------------------+-------------------
1 | [1,1] | [0]
2 | [1,1,0] | [0,-1]
3 | [1,1,0,0,-1] | [0,-1,0,-1]
4 | [1,1,0,0,-1,0,-1,0,-1] | [0,-1,0,-1,1,-1,1,-1]

Crossrefs

Programs

  • Haskell
    a306216_list = 1 : 1 : concat (Data.List.unfoldr nextGeneration [1,1]) where
      nextGeneration l = Just (diff l, l ++ diff l)
      diff xs =  zipWith subtract xs (tail xs)
  • Mathematica
    Nest[Join[#, Differences@ #] &, {1, 1}, 7] (* Michael De Vlieger, Jan 29 2019 *)
  • Ruby
    generations = 10
    (1...generations).reduce([1,1]) do |s, _|
      s += s.each_cons(2).map { |a, b| b - a }
    end
    
Previous Showing 11-18 of 18 results.