cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A326505 Number of (binary) max-heaps on n elements from the set {0,1} containing exactly four 0's.

Original entry on oeis.org

1, 1, 2, 5, 7, 11, 17, 27, 34, 50, 65, 94, 110, 154, 182, 250, 279, 375, 420, 555, 601, 781, 847, 1085, 1152, 1456, 1547, 1932, 2024, 2500, 2620, 3204, 3325, 4029, 4182, 5025, 5179, 6175, 6365, 7535, 7726, 9086, 9317, 10890, 11122, 12926, 13202, 15262, 15539
Offset: 4

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Crossrefs

Column k=4 of A309049.

Formula

G.f.: -x^4*(2*x^3-x^2+1)*(2*x^6-x^5-x^4+x^3+1)/((x^2+1)^2*(x+1)^4*(x-1)^5).

A326506 Number of (binary) max-heaps on n elements from the set {0,1} containing exactly five 0's.

Original entry on oeis.org

1, 1, 2, 5, 8, 13, 24, 34, 52, 74, 116, 145, 211, 270, 392, 460, 643, 767, 1062, 1197, 1618, 1843, 2464, 2702, 3550, 3920, 5096, 5481, 7029, 7596, 9648, 10232, 12853, 13677, 17034, 17877, 22060, 23209, 28424, 29594, 35960, 37510, 45276, 46849, 56167, 58202
Offset: 5

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Crossrefs

Column k=5 of A309049.

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, 2, -2, -6, 6, 0, 0, 6, -6, -2, 2, -2, 2, 1, -1},{1, 1, 2, 5, 8, 13, 24, 34, 52, 74, 116, 145, 211, 270, 392, 460, 643},50] (* Ray Chandler, Sep 25 2022 *)

A326507 Number of (binary) max-heaps on n elements from the set {0,1} containing exactly six 0's.

Original entry on oeis.org

1, 1, 2, 5, 9, 16, 27, 44, 68, 114, 156, 236, 325, 500, 622, 900, 1143, 1659, 1954, 2731, 3277, 4564, 5185, 7040, 8114, 10948, 12124, 16058, 17977, 23640, 25692, 33304, 36493, 46965, 50322, 64017, 69025, 87208, 92423, 115652, 123168, 153142, 160908, 198440
Offset: 6

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Crossrefs

Column k=6 of A309049.

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, 3, -3, -8, 8, -2, 2, 12, -12, -2, 2, -8, 8, 3, -3, 2, -2, -1, 1},{1, 1, 2, 5, 9, 16, 27, 44, 68, 114, 156, 236, 325, 500, 622, 900, 1143, 1659, 1954, 2731, 3277},50] (* Ray Chandler, Sep 25 2022 *)

A326508 Number of (binary) max-heaps on n elements from the set {0,1} containing exactly seven 0's.

Original entry on oeis.org

1, 1, 2, 5, 10, 18, 32, 54, 94, 140, 222, 329, 532, 708, 1060, 1432, 2175, 2691, 3878, 4905, 7110, 8398, 11740, 14150, 19788, 22622, 30826, 35845, 48712, 54376, 72472, 82016, 108845, 119317, 155962, 172861, 224834, 243018, 312232, 340486, 435210, 465184
Offset: 7

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Crossrefs

Column k=7 of A309049.

A326509 Number of (binary) max-heaps on n elements from the set {0,1} containing exactly eight 0's.

Original entry on oeis.org

1, 1, 2, 5, 11, 21, 37, 69, 109, 181, 287, 487, 695, 1079, 1547, 2451, 3194, 4742, 6321, 9522, 11736, 16858, 21262, 30782, 36420, 50928, 61596, 86402, 99282, 135682, 158874, 217130, 243959, 326783, 373076, 498819, 550809, 724803, 811051, 1064139, 1158863
Offset: 8

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Crossrefs

Column k=8 of A309049.

A326510 Number of (binary) max-heaps on n elements from the set {0,1} containing exactly nine 0's.

Original entry on oeis.org

1, 1, 2, 5, 12, 23, 44, 76, 131, 219, 390, 600, 971, 1469, 2424, 3328, 5090, 7138, 11160, 14397, 21237, 28018, 41944, 51464, 73734, 92806, 134244, 159128, 222578, 269926, 379520, 437776, 599719, 706183, 969590, 1095469, 1473434, 1694393, 2279460, 2532548
Offset: 9

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Crossrefs

Column k=9 of A309049.

A326511 Number of (binary) max-heaps on n elements from the set {0,1} containing exactly ten 0's.

Original entry on oeis.org

1, 1, 2, 5, 13, 26, 47, 86, 151, 277, 460, 783, 1248, 2136, 3091, 4872, 7166, 11610, 15720, 23832, 32847, 50788, 64714, 94916, 124296, 185246, 226976, 324586, 407824, 589416, 699010, 977912, 1188567, 1674431, 1938526, 2661055, 3147865, 4338414, 4923481
Offset: 10

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Crossrefs

Column k=10 of A309049.

Programs

  • Maple
    b:= proc(n) option remember; series(`if`(n=0, 1, (g-> (f->
          x^n+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n))), x, 11)
        end:
    a:= n-> coeff(b(n), x, 10):
    seq(a(n), n=10..50);
Previous Showing 11-17 of 17 results.