cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A341668 a(n) is the number of divisors of prime(n)^7 - 1.

Original entry on oeis.org

2, 4, 6, 16, 16, 12, 10, 24, 16, 18, 16, 36, 32, 48, 16, 24, 64, 24, 32, 48, 24, 128, 16, 16, 96, 36, 64, 32, 96, 60, 144, 64, 32, 64, 12, 48, 48, 20, 16, 24, 16, 144, 128, 56, 96, 192, 96, 128, 32, 48, 64, 96, 80, 16, 72, 32, 192, 64, 96, 192, 32, 48, 48, 64
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

a(n) >= A309906(7) = 8 for n > 3.

Examples

			       p =                     factorization
  n  prime(n)   p^7 - 1          of p^7 - 1       a(n)
  -  --------  ----------  ---------------------  ----
  1      2            127  127                      2
  2      3           2186  2 * 1093                 4
  3      5          78124  2^2 * 19531              6
  4      7         823542  2 * 3 * 29 * 4733       16
  5     11       19487170  2 * 5 * 43 * 45319      16
  6     13       62748516  2^2 * 3 * 5229043       12
  7     17      410338672  2^4 * 25646167          10
  8     19      893871738  2 * 3^2 * 701 * 70841   24
  9     23     3404825446  2 * 11 * 29 * 5336717   16
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, Prime[n]^7 - 1]; Array[a, 50] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^7-1); \\ Michel Marcus, Feb 27 2021

Formula

a(n) = A000005(A000040(n)^7 - 1).

A341669 Primes p such that p^7 - 1 has 8 divisors.

Original entry on oeis.org

863, 1439, 2039, 3167, 3803, 4799, 10559, 11423, 14087, 14207, 15287, 15803, 16139, 18743, 20663, 21059, 21179, 22343, 25307, 25919, 26459, 29483, 29759, 30803, 32507, 32987, 33107, 34319, 34367, 35879, 43427, 45887, 46559, 46643, 46919, 54959, 57119, 57587
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

For each term p, p^7 - 1 = (p-1)*(p^6 + p^5 + p^4 + p^3 + p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 = r.
Conjecture: sequence is infinite.

Examples

			      p =
  n   a(n)        factorization of p^7 - 1
  -  -----  ------------------------------------
  1    863  2 *  431 *        413588356833933793
  2   1439  2 *  719 *       8885189025331426081
  3   2039  2 * 1019 *      71897932302115976281
  4   3167  2 * 1583 *    1009312223899992366817
  5   3803  2 * 1901 *    3026022586778671180093
  6   4799  2 * 2399 *   12217856103420111345601
  7  10559  2 * 5279 * 1386046726502834819142721
  8  11423  2 * 5711 * 2221872233870122705845793
  9  14087  2 * 7043 * 7815232779386331437540137
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60000], PrimeQ[#] && DivisorSigma[0, #^7 - 1] == 8 &] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    isok(p) = isprime(p) && (numdiv(p^7-1) == 8); \\ Michel Marcus, Feb 27 2021

A342065 Primes p such that p^9 - 1 has 16 divisors.

Original entry on oeis.org

383, 12227, 44519, 44687, 56003, 97523, 130259, 148727, 160739, 169007, 208799, 258887, 270563, 281783, 331883, 336143, 353099, 364979, 498119, 501707, 550679, 573107, 577667, 716747, 753023, 775367, 781007, 784727, 861299, 887543, 1084247, 1085159, 1099139
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 27 2021

Keywords

Comments

Conjecture: sequence is infinite.
The only primes p such that p^9 - 1 has fewer than A309906(9)=16 divisors are p=2 (2^9 - 1 = 511 = 7*73 has 4 divisors) and p=3 (3^9 - 1 = 19682 = 2*13*757 has 8 divisors).
For every term p, p^9 - 1 is of the form 2*q*r*s, where q = (p-1)/2, r = (p^2 + p + 1), and s = (p^6 + p^3 + 1) are primes (see Example section).
The Generalized Dickson's Conjecture implies there are infinitely many p such that p, (p-1)/2, p^2+p+1 and p^6+p^3+1 are prime. - Robert Israel, Feb 28 2021

Examples

			                       factorization of p^9 - 1
    p =   ===================================================
n   a(n)  2 * (p-1)/2 * (p^2+p+1) *      (p^6 + p^3 + 1)
-  -----  ---------------------------------------------------
1    383  2 *   191   *    147073 *          3156404483062657
2  12227  2 *  6113   * 149511757 * 3341330794198073514753973
		

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0: q:= 1:
    while count < 100 do
      q:= nextprime(q);
      p:= 2*q+1;
      if isprime(p) and isprime(p^2+p+1) and isprime(p^6+p^3+1) then
        count:= count+1; R:= R, p;
      fi
    od:
    R; # Robert Israel, Feb 28 2021

A341663 a(n) is the number of divisors of prime(n)^3 - 1.

Original entry on oeis.org

2, 4, 6, 12, 16, 18, 10, 16, 16, 24, 24, 48, 16, 24, 16, 24, 8, 72, 72, 16, 32, 72, 16, 16, 36, 18, 24, 32, 60, 40, 32, 16, 64, 48, 48, 72, 36, 96, 8, 12, 16, 96, 96, 84, 36, 32, 192, 24, 16, 72, 32, 32, 60, 32, 36, 48, 48, 40, 144, 64, 48, 12, 64, 32, 72, 24
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

a(n) >= A309906(3) = 8 for n > 3.

Examples

			        p =                   factorization
   n  prime(n)  p^3 - 1         of p^3 - 1        a(n)
  --  --------  -------  -----------------------  ----
   1      2           7  7                          2
   2      3          26  2 * 13                     4
   3      5         124  2^2 * 31                   6
   4      7         342  2 * 3^2 * 19              12
   5     11        1330  2 * 5 * 7 * 19            16
   6     13        2196  2^2 * 3^2 * 61            18
   7     17        4912  2^4 * 307                 10
   8     19        6858  2 * 3^3 * 127             16
   9     23       12166  2 * 7 * 11 * 79           16
  10     29       24388  2^2 * 7 * 13 * 67         24
  11     31       29790  2 * 3^2 * 5 * 331         24
  12     37       50652  2^2 * 3^3 * 7 * 67        48
  13     41       68920  2^3 * 5 * 1723            16
  14     43       79506  2 * 3^2 * 7 * 631         24
  15     47      103822  2 * 23 * 37 * 61          16
  16     53      148876  2^2 * 7 * 13 * 409        24
  17     59      205378  2 * 29 * 3541              8
  18     61      226980  2^2 * 3^2 * 5 * 13 * 97   72
  19     67      300762  2 * 3^2 * 7^2 * 11 * 31   72
  20     71      357910  2 * 5 * 7 * 5113          16
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, Prime[n]^3 - 1]; Array[a, 50] (* Amiram Eldar, Feb 26 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^3-1); \\ Michel Marcus, Feb 26 2021

Formula

a(n) = A000005(A000040(n)^3 - 1).

A342066 Primes p such that p^10 - 1 has 256 divisors.

Original entry on oeis.org

1187, 4723, 33037, 66973, 72797, 87973, 100523, 197123, 219683, 229693, 276293, 278827, 440653, 448997, 482837, 562963, 601333, 621443, 670493, 742723, 846877, 892357, 1033427, 1149307, 1166027, 1245067, 1256747, 1614413, 1679773, 1865693, 1950323, 1970467
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 27 2021

Keywords

Comments

Conjecture: sequence is infinite.
The only primes p such that p^10 - 1 has fewer than A309906(10)=256 divisors are 2, 3, 5, 7, 11, 13, and 43.
p^10 - 1 = (p-1)*(p+1)*(p^4 - p^3 + p^2 - p + 1)*(p^4 + p^3 + p^2 + p + 1). For every p > 11, one of these five factors is divisible by 11; one of p-1 and p+1 is divisible by 3; and p-1 and p+1 are consecutive even numbers, so one of them is divisible by 4 and their product is divisible by 8; thus, p^10 - 1 is divisible by 2^3 * 3 * 11.
For every term p with the exception of a(1)=1187, p^10 - 1 is of the form 2^3 * 3 * 11 * q * r * s * t, where q, r, s, and t are distinct primes > 11.

Examples

			For p = a(1) = 1187, p^10 - 1 = 2^3 * 3^3 * 11 * 593 * 1983522604541 * 1986867499321;
for p = a(2) = 4723, p^10 - 1 = 2^3 * 3 * 11 * 787 * 1181 * 45245048697451 * 497484826300381.
		

Crossrefs

A342067 Primes p such that p^11 - 1 has 8 divisors.

Original entry on oeis.org

3, 467, 2039, 4679, 5399, 5939, 6899, 8783, 12347, 16487, 18443, 23879, 25583, 33647, 35879, 36299, 44819, 47207, 53147, 57119, 67499, 74507, 90239, 93287, 96059, 119759, 125003, 133499, 135119, 136223, 157019, 159539, 164999, 165059, 168887, 178799, 188159
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 28 2021

Keywords

Comments

Conjecture: sequence is infinite.
The only primes p such that p^11 - 1 has fewer than A309906(11)=8 divisors are 2 and 5.
p^11 - 1 = (p-1)*(p^10 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^3 + p^2 + p + 1).
For every term p, p^11 - 1 is of the form 2*q*r, where q and r are distinct odd primes. With the exception of p=a(1)=3, each term p is a number such that (p-1)/2 and (p^10 + p^9 + p^8 + ... + p^2 + p + 1) are primes.

Examples

			   p =
n  a(n)             factorization of p^11 - 1
-  ----  ------------------------------------------------
1     3  2 *   23 *                                  3851
2   467  2 *  233 *           494424256962371823779424877
3  2039  2 * 1019 *    1242754384106847037173120489949801
4  4679  2 * 2339 * 5030640462820574591105701447273296601
		

Crossrefs

Programs

  • PARI
    isok(p) = isprime(p) && (numdiv(p^11-1) == 8); \\ Michel Marcus, Feb 28 2021
Previous Showing 21-26 of 26 results.