cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A316501 Number of unlabeled rooted trees with n nodes in which the branches of any node with more than one distinct branch have empty intersection.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 45, 103, 250, 611, 1528, 3853, 9875, 25481, 66382, 174085, 459541, 1219462
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Examples

			The a(6) = 19 rooted trees:
  (((((o)))))
  ((((oo))))
  (((o(o))))
  (((ooo)))
  ((o((o))))
  ((o(oo)))
  (((o)(o)))
  ((oo(o)))
  ((oooo))
  (o(((o))))
  (o((oo)))
  (o(o(o)))
  (o(ooo))
  ((o)((o)))
  (oo((o)))
  (oo(oo))
  (o(o)(o))
  (ooo(o))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],Or[Length[Union[#]]==1,Intersection@@#=={}]&]];
    Table[Length[strut[n]],{n,15}]

A317785 Number of locally connected rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 42, 55, 67, 91, 109, 144, 177, 228, 281, 366, 448, 579, 720, 916, 1142
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Comments

An unlabeled rooted tree is locally connected if the branches directly under any given node are connected as a hypergraph.

Examples

			The a(11) = 12 locally connected rooted trees:
  ((((((((((o))))))))))
  ((((((((o)(o))))))))
  (((((((o))((o)))))))
  ((((((o)))(((o))))))
  (((((o))))((((o)))))
  ((((((o)(o)(o))))))
  (((((o))((o)(o)))))
  ((((o))((o))((o))))
  ((((o)(o)(o)(o))))
  (((o))((o)(o)(o)))
  (((o)(o))((o)(o)))
  ((o)(o)(o)(o)(o))
		

Crossrefs

Programs

  • Mathematica
    multijoin[mss__]:=Join@@Table[Table[x, {Max[Count[#, x]&/@{mss}]}], {x, Union[mss]}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,Length[csm[#]]==1]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,10}]

A319271 Number of series-reduced locally non-intersecting aperiodic rooted trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 3, 9, 12, 27, 42, 91, 151, 312, 550, 1099, 2026, 3999, 7527, 14804, 28336, 55641, 107737, 211851, 413508, 814971, 1600512, 3162761, 6241234
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and aperiodic if the multiplicities in the multiset of branches directly under any given node are relatively prime, and locally non-intersecting if the branches directly under any given node with more than one branch have empty intersection.

Examples

			The a(8) = 9 rooted trees:
  (o(o(o(o))))
  (o(o(o)(o)))
  (o(ooo(o)))
  (oo(oo(o)))
  (o(o)(o(o)))
  (ooo(o(o)))
  (o(o)(o)(o))
  (ooo(o)(o))
  (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    btrut[n_]:=btrut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[btrut/@c]]]/@IntegerPartitions[n-1],And[Intersection@@#=={},GCD@@Length/@Split[#]==1]&]];
    Table[Length[btrut[n]],{n,30}]

A358460 Number of locally disjoint ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 103, 301, 902, 2767, 8637, 27324, 87409, 282319, 919352
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2022

Keywords

Comments

Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex.

Examples

			The a(1) = 1 through a(5) = 13 trees:
  o  (o)  (oo)   (ooo)    (oooo)
          ((o))  ((o)o)   ((o)oo)
                 ((oo))   ((oo)o)
                 (o(o))   ((ooo))
                 (((o)))  (o(o)o)
                          (o(oo))
                          (oo(o))
                          (((o))o)
                          (((o)o))
                          (((oo)))
                          ((o(o)))
                          (o((o)))
                          ((((o))))
		

Crossrefs

The locally non-intersecting version is A143363, unordered A007562.
The unordered version is A316473, ranked by A316495.
A000108 counts ordered rooted trees, unordered A000081.
A358453 counts transitive ordered trees, unordered A290689.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join @@ Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,{_,{_,x_,_},_,{_,x_,_},_}]&]],{n,10}]

A319286 Number of series-reduced locally disjoint rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 2, 9, 67, 573, 6933, 97147, 1666999
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other branch of the same root.

Examples

			The a(3) = 9 trees:
  (1(11))
   (111)
  (1(12))
  (2(11))
   (112)
  (1(23))
  (2(13))
  (3(12))
   (123)
Examples of rooted trees that are not locally disjoint are ((11)(12)) and ((12)(13)).
		

Crossrefs

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],disjointQ]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]

A319285 Number of series-reduced locally stable rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 2, 9, 69, 619, 7739, 109855, 1898230
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally stable if no branch is a submultiset of any other branch of the same root.

Examples

			The a(3) = 9 trees:
  (1(11))
   (111)
  (1(12))
  (2(11))
   (112)
  (1(23))
  (2(13))
  (3(12))
   (123)
Examples of rooted trees that are not locally stable are ((11)(111)), ((11)(112)), ((12)(112)), ((12)(123)).
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],stableQ]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]

A319291 Number of series-reduced locally disjoint rooted trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 2, 12, 107, 1299, 20764, 412957, 9817743
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			The a(3) = 12 series-reduced locally disjoint rooted trees:
  (1(11))
   (111)
  (1(22))
  (2(12))
   (122)
  (1(12))
  (2(11))
   (112)
  (1(23))
  (2(13))
  (3(12))
   (123)
The trees counted by A316651(4) but not by a(4):
  ((11)(12))
  ((12)(13))
  ((12)(22))
  ((12)(23))
  ((13)(23))
		

Crossrefs

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],disjointQ]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]

A319292 Number of series-reduced locally nonintersecting rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 1, 6, 48, 455, 5700, 83138, 1454870
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally nonintersecting if the intersection of all branches directly under any given node with at least two branches is empty.

Examples

			The a(3) = 6 trees are: (1(12)), (112), (1(23)), (2(13)), (3(12)), (123). Missing from this list but counted by A316651 are: (1(11)), (2(11)), (111).
		

Crossrefs

Programs

  • Mathematica
    nonintQ[u_]:=Intersection@@u=={};
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],nonintQ]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]
Previous Showing 21-28 of 28 results.