cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 103 results. Next

A323794 Number of non-isomorphic weight-n multisets of sets of multisets.

Original entry on oeis.org

1, 1, 5, 17, 77, 318, 1561, 7667
Offset: 0

Views

Author

Gus Wiseman, Jan 28 2019

Keywords

Comments

Also the number of non-isomorphic set multipartitions of multiset partitions of weight n.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 17 multiset partitions:
  {{1}}  {{11}}      {{111}}
         {{12}}      {{112}}
         {{1}{2}}    {{123}}
         {{1}}{{1}}  {{1}{11}}
         {{1}}{{2}}  {{1}{12}}
                     {{1}{23}}
                     {{2}{11}}
                     {{1}}{{11}}
                     {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{2}}{{11}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{1}}{{1}}{{1}}
                     {{1}}{{1}}{{2}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A319566 Number of non-isomorphic connected T_0 set systems of weight n.

Original entry on oeis.org

1, 1, 0, 1, 2, 3, 8, 17, 41, 103, 276
Offset: 0

Views

Author

Gus Wiseman, Sep 23 2018

Keywords

Comments

In a set system, two vertices are equivalent if in every block the presence of the first is equivalent to the presence of the second. The T_0 condition means that there are no equivalent vertices.
The weight of a set system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 8 set systems:
1:        {{1}}
3:     {{2},{1,2}}
4:    {{1,3},{2,3}}
     {{1},{2},{1,2}}
5:  {{2},{3},{1,2,3}}
    {{2},{1,3},{2,3}}
    {{3},{1,3},{2,3}}
6: {{3},{1,4},{2,3,4}}
   {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1,3},{2,4},{3,4}}
   {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
		

Crossrefs

A319760 Number of non-isomorphic intersecting strict multiset partitions (sets of multisets) of weight n.

Original entry on oeis.org

1, 1, 2, 5, 11, 26, 68, 162, 423, 1095, 2936
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 strict multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,2,3}}
   {{1},{1,1}}
   {{2},{1,2}}
4: {{1,1,1,1}}
   {{1,1,2,2}}
   {{1,2,2,2}}
   {{1,2,3,3}}
   {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{3},{1,2,3}}
   {{1,2},{2,2}}
   {{1,3},{2,3}}
		

Crossrefs

A319789 Number of intersecting multiset partitions of strongly normal multisets of size n.

Original entry on oeis.org

1, 1, 3, 6, 17, 40, 122, 330, 1032
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition its multiplicities are weakly decreasing. A multiset partition is intersecting iff no two parts are disjoint.

Examples

			The a(1) = 1 through a(3) = 6 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
3: {{1,1,1}}
   {{1,1,2}}
   {{1,2,3}}
   {{1},{1,1}}
   {{1},{1,2}}
   {{1},{1},{1}}
		

Crossrefs

A326026 Number of non-isomorphic multiset partitions of weight n where each part has a different length.

Original entry on oeis.org

1, 1, 2, 7, 12, 35, 111, 247, 624, 1843, 6717, 15020, 46847, 124808, 412577, 1658973, 4217546, 12997734, 40786810, 126971940, 437063393, 2106317043, 5499108365, 19037901867, 59939925812, 210338815573, 683526043801, 2741350650705, 14848209030691, 41533835240731, 151548411269815
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

The number of non-isomorphic multiset partitions of weight n is A007716(n).

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions:
  {{1}}  {{1,1}}  {{1,1,1}}    {{1,1,1,1}}
         {{1,2}}  {{1,2,2}}    {{1,1,2,2}}
                  {{1,2,3}}    {{1,2,2,2}}
                  {{1},{1,1}}  {{1,2,3,3}}
                  {{1},{2,2}}  {{1,2,3,4}}
                  {{1},{2,3}}  {{1},{1,1,1}}
                  {{2},{1,2}}  {{1},{1,2,2}}
                               {{1},{2,2,2}}
                               {{1},{2,3,3}}
                               {{1},{2,3,4}}
                               {{2},{1,2,2}}
                               {{3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    D(p,n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); polcoef(prod(k=1, #u, 1 + u[k]*x^k + O(x*x^n)), n)/prod(i=1, #v, i^v[i]*v[i]!)}
    a(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Feb 08 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 08 2020

A340652 Number of non-isomorphic twice-balanced multiset partitions of weight n.

Original entry on oeis.org

1, 1, 0, 2, 3, 6, 20, 65, 134, 482, 1562, 4974, 15466, 51768, 179055, 631737, 2216757, 7905325, 28768472, 106852116, 402255207, 1532029660, 5902839974, 23041880550, 91129833143, 364957188701, 1478719359501, 6058859894440, 25100003070184, 105123020009481, 445036528737301
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2021

Keywords

Comments

We define a multiset partition to be twice-balanced if all of the following are equal:
(1) the number of parts;
(2) the number of distinct vertices;
(3) the greatest size of a part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 6 multiset partitions (empty column indicated by dot):
  {{1}}  .  {{1},{2,2}}  {{1,1},{2,2}}  {{1},{1},{2,3,3}}
            {{2},{1,2}}  {{1,2},{1,2}}  {{1},{2},{2,3,3}}
                         {{1,2},{2,2}}  {{1},{2},{3,3,3}}
                                        {{1},{3},{2,3,3}}
                                        {{2},{3},{1,2,3}}
                                        {{3},{3},{1,2,3}}
		

Crossrefs

The co-balanced version is A319616.
The singly balanced version is A340600.
The cross-balanced version is A340651.
The version for factorizations is A340655.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A303975 counts distinct prime factors in prime indices.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
- A047993 counts balanced partitions.
- A106529 lists balanced numbers.
- A340596 counts co-balanced factorizations.
- A340653 counts balanced factorizations.
- A340657/A340656 list numbers with/without a twice-balanced factorization.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    G(m,n,k,y=1)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, y^t*subst(x*Polrev(K(q, t, min(k,n\t))), x, x^t)/t, O(x*x^n)))); s/m!}
    seq(n)={Vec(1 + sum(k=1,n, polcoef(G(k,n,k,y) - G(k-1,n,k,y) - G(k,n,k-1,y) + G(k-1,n,k-1,y), k, y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 15 2024

A316979 Number of strict factorizations of n into factors > 1 with no equivalent primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 6, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 7, 2, 1, 1, 6, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

In a factorization, two primes are equivalent if each factor has in its prime factorization the same multiplicity of both primes. For example, in 60 = (2*30) the primes {3, 5} are equivalent but {2, 3} and {2, 5} are not.

Examples

			The a(24) = 5 factorizations are (2*3*4), (2*12), (3*8), (4*6), (24).
The a(36) = 4 factorizations are (2*3*6), (2*18), (3*12), (4*9).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[facs[n],And[UnsameQ@@#,UnsameQ@@dual[primeMS/@#]]&]],{n,100}]

Formula

a(prime^n) = A000009(n).

A318287 Number of non-isomorphic strict multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 3, 4, 5, 3, 7, 4, 7, 9, 5, 5, 12, 6, 12, 14, 10, 8, 13, 12, 14, 14, 18, 10, 34
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(20) = 12 strict multiset partitions of {1,1,1,2,3}:
  {{1,1,1,2,3}}
  {{1},{1,1,2,3}}
  {{2},{1,1,1,3}}
  {{1,1},{1,2,3}}
  {{1,2},{1,1,3}}
  {{2,3},{1,1,1}}
  {{1},{2},{1,1,3}}
  {{1},{1,1},{2,3}}
  {{1},{1,2},{1,3}}
  {{2},{3},{1,1,1}}
  {{2},{1,1},{1,3}}
  {{1},{2},{3},{1,1}}
		

Crossrefs

Formula

a(n) = A318357(A181821(n)).

A320801 Regular triangle read by rows where T(n,k) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 3, 6, 0, 1, 6, 10, 16, 0, 1, 6, 20, 30, 34, 0, 1, 9, 31, 75, 92, 90, 0, 1, 9, 45, 126, 246, 272, 211, 0, 1, 12, 60, 223, 501, 839, 823, 558, 0, 1, 12, 81, 324, 953, 1900, 2762, 2482, 1430, 0, 1, 15, 100, 491, 1611, 4033, 7120, 9299, 7629, 3908
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3
   0   1   3   6
   0   1   6  10  16
   0   1   6  20  30  34
   0   1   9  31  75  92  90
   0   1   9  45 126 246 272 211
   0   1  12  60 223 501 839 823 558
		

Crossrefs

Row sums are A007716. Last column is A049311.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={prod(j=1, #q, my(g=gcd(t, q[j]), e=(q[j]/g)); (1 - y^e + y^e/(1 - x^e) + O(x*x^k))^g) - 1}
    G(n)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, substvec(K(q, t, n\t)/t, [x,y], [x^t,y^t])) + O(x*x^n))); s/n!}
    T(n)=[Vecrev(p) | p<-Vec(G(n))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 16 2024

A321446 Number of (0,1)-matrices with n ones, no zero rows or columns, and distinct rows and columns.

Original entry on oeis.org

1, 1, 2, 10, 72, 624, 6522, 80178, 1129368, 17917032, 316108752, 6138887616, 130120838400, 2989026225696, 73964789192400, 1961487062520720, 55495429438186920, 1668498596700706440, 53122020640948010640, 1785467619718933936560, 63175132023953553400440
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Examples

			The a(3) = 10 matrices:
  [1 1] [1 1] [1 0] [0 1]
  [1 0] [0 1] [1 1] [1 1]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]]]&]],{n,6}]
  • PARI
    \\ Q(m, n, wf) defined in A321588.
    seq(n)={my(R=vectorv(n,m,Q(m,n,w->1 + y^w + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum(vecsum(R)))} \\ Andrew Howroyd, Jan 24 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 20 2024
Previous Showing 41-50 of 103 results. Next