cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A319616 Number of non-isomorphic square multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices.
Also the number of square integer matrices with entries summing to n and no empty rows or columns, up to permutation of rows and columns.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1}, {2}}
3: {{1,1,1}}
   {{1}, {2,2}}
   {{2}, {1,2}}
   {{1}, {2},{3}}
4: {{1,1,1,1}}
   {{1}, {1,2,2}}
   {{1}, {2,2,2}}
   {{2}, {1,2,2}}
   {{1,1}, {2,2}}
   {{1,2}, {1,2}}
   {{1,2}, {2,2}}
   {{1}, {1}, {2,3}}
   {{1}, {2}, {3,3}}
   {{1}, {3}, {2,3}}
   {{1}, {2}, {3}, {4}}
Non-isomorphic representatives of the a(4) = 11 square matrices:
. [4]
.
. [1 0]   [1 0]   [0 1]   [2 0]   [1 1]   [1 1]
. [1 2]   [0 3]   [1 2]   [0 2]   [1 1]   [0 2]
.
. [1 0 0]   [1 0 0]   [1 0 0]
. [1 0 0]   [0 1 0]   [0 0 1]
. [0 1 1]   [0 0 2]   [0 1 1]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for M.
    a(n) = {if(n==0, 1, sum(i=1, n, M(i,i,n) - 2*M(i,i-1,n) + M(i-1,i-1,n)))} \\ Andrew Howroyd, Nov 15 2018
    
  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n,polcoef(G(k,n,n,y),k,y) - polcoef(G(k-1,n,n,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11)-a(20) from Andrew Howroyd, Nov 15 2018
a(21) onwards from Andrew Howroyd, Jan 15 2024

A340654 Number of cross-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 2, 5, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be cross-balanced if either (1) it is empty or (2) the maximum image of A001222 over the factors is A001221(n).

Examples

			The cross-balanced factorizations for n = 12, 24, 36, 72, 144, 240:
  2*6   4*6     4*9     2*4*9     4*4*9       8*30
  3*4   2*2*6   6*6     2*6*6     4*6*6       12*20
        2*3*4   2*2*9   3*4*6     2*2*4*9     5*6*8
                2*3*6   2*2*2*9   2*2*6*6     2*4*30
                3*3*4   2*2*3*6   2*3*4*6     2*6*20
                        2*3*3*4   3*3*4*4     2*8*15
                                  2*2*2*2*9   3*4*20
                                  2*2*2*3*6   3*8*10
                                  2*2*3*3*4   4*5*12
                                              2*10*12
                                              2*3*5*8
                                              2*2*2*30
                                              2*2*3*20
                                              2*2*5*12
		

Crossrefs

Positions of terms > 1 are A126706.
Positions of 1's are A303554.
The co-balanced version is A340596.
The version for unlabeled multiset partitions is A340651.
The balanced version is A340653.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A320655 counts factorizations into semiprimes.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 have an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340656 have no twice-balanced factorizations.
- A340657 have a twice-balanced factorization.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],#=={}||PrimeNu[n]==Max[PrimeOmega/@#]&]],{n,100}]
  • PARI
    A340654(n, m=n, om=omega(n),mbo=0) = if(1==n,(mbo==om), sumdiv(n, d, if((d>1)&&(d<=m), A340654(n/d, d, om, max(mbo,bigomega(d)))))); \\ Antti Karttunen, Jun 19 2024

Extensions

Data section extended up to a(105) by Antti Karttunen, Jun 19 2024

A340655 Number of twice-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 0, 0, 2, 0, 2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The twice-balanced factorizations for n = 12, 120, 360, 480, 900, 2520:
  2*6   3*5*8    5*8*9     2*8*30    2*6*75    2*2*7*90
  3*4   2*2*30   2*4*45    3*8*20    2*9*50    2*3*5*84
        2*3*20   2*6*30    4*4*30    3*4*75    2*3*7*60
        2*5*12   2*9*20    4*6*20    3*6*50    2*5*7*36
                 3*4*30    4*8*15    4*5*45    3*3*5*56
                 3*6*20    5*8*12    5*6*30    3*3*7*40
                 3*8*15    6*8*10    5*9*20    3*5*7*24
                 4*5*18    2*12*20   2*10*45   2*2*2*315
                 5*6*12    4*10*12   2*15*30   2*2*3*210
                 2*10*18             2*18*25   2*2*5*126
                 2*12*15             3*10*30   2*3*3*140
                 3*10*12             3*12*25
                                     3*15*20
                                     5*10*18
                                     5*12*15
		

Crossrefs

The co-balanced version is A340596.
The version for unlabeled multiset partitions is A340652.
The balanced version is A340653.
The cross-balanced version is A340654.
Positions of zeros are A340656.
Positions of nonzero terms are A340657.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 have an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],#=={}||Length[#]==PrimeNu[n]==Max[PrimeOmega/@#]&]],{n,30}]

A340656 Numbers without a twice-balanced factorization.

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 42, 46, 48, 49, 51, 55, 57, 58, 60, 62, 64, 65, 66, 69, 70, 72, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 102, 105, 106, 108, 110, 111, 112, 114, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The sequence of terms together with their prime indices begins:
     4: {1,1}          33: {2,5}          64: {1,1,1,1,1,1}
     6: {1,2}          34: {1,7}          65: {3,6}
     8: {1,1,1}        35: {3,4}          66: {1,2,5}
     9: {2,2}          38: {1,8}          69: {2,9}
    10: {1,3}          39: {2,6}          70: {1,3,4}
    14: {1,4}          42: {1,2,4}        72: {1,1,1,2,2}
    15: {2,3}          46: {1,9}          74: {1,12}
    16: {1,1,1,1}      48: {1,1,1,1,2}    77: {4,5}
    21: {2,4}          49: {4,4}          78: {1,2,6}
    22: {1,5}          51: {2,7}          80: {1,1,1,1,3}
    25: {3,3}          55: {3,5}          81: {2,2,2,2}
    26: {1,6}          57: {2,8}          82: {1,13}
    27: {2,2,2}        58: {1,10}         84: {1,1,2,4}
    30: {1,2,3}        60: {1,1,2,3}      85: {3,7}
    32: {1,1,1,1,1}    62: {1,11}         86: {1,14}
For example, the factorizations of 48 with (2) and (3) equal are: (2*2*2*6), (2*2*3*4), (2*4*6), (3*4*4), but since none of these has length 2, the sequence contains 48.
		

Crossrefs

Positions of zeros in A340655.
The complement is A340657.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340596 counts co-balanced factorizations.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340653 counts balanced factorizations.
- A340654 counts cross-balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]=={}&]

A340657 Numbers with a twice-balanced factorization.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 36, 37, 40, 41, 43, 44, 45, 47, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 88, 89, 92, 97, 98, 99, 100, 101, 103, 104, 107, 109, 113, 116, 117, 120, 124, 127, 131, 135, 136, 137
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            29: {10}          59: {17}
      2: {1}           31: {11}          61: {18}
      3: {2}           36: {1,1,2,2}     63: {2,2,4}
      5: {3}           37: {12}          67: {19}
      7: {4}           40: {1,1,1,3}     68: {1,1,7}
     11: {5}           41: {13}          71: {20}
     12: {1,1,2}       43: {14}          73: {21}
     13: {6}           44: {1,1,5}       75: {2,3,3}
     17: {7}           45: {2,2,3}       76: {1,1,8}
     18: {1,2,2}       47: {15}          79: {22}
     19: {8}           50: {1,3,3}       83: {23}
     20: {1,1,3}       52: {1,1,6}       88: {1,1,1,5}
     23: {9}           53: {16}          89: {24}
     24: {1,1,1,2}     54: {1,2,2,2}     92: {1,1,9}
     28: {1,1,4}       56: {1,1,1,4}     97: {25}
The twice-balanced factorizations of 1920 (with prime indices {1,1,1,1,1,1,1,2,3}) are (8*8*30) and (8*12*20), so 1920 is in the sequence.
		

Crossrefs

The alt-balanced version is A340597.
Positions of nonzero terms in A340655.
The complement is A340656.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340653 counts balanced factorizations.
- A340654 counts cross-balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]!={}&]

A340600 Number of non-isomorphic balanced multiset partitions of weight n.

Original entry on oeis.org

1, 1, 0, 4, 7, 16, 52, 206, 444, 1624, 5462, 19188, 62890, 215367, 765694, 2854202, 10634247, 39842786, 150669765, 581189458, 2287298588, 9157598354, 37109364812, 151970862472, 629048449881, 2635589433705, 11184718653563, 48064965080106, 208988724514022, 918639253237646, 4079974951494828
Offset: 0

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

We define a multiset partition to be balanced if it has exactly as many parts as the greatest size of a part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 16 multiset partitions (empty column indicated by dot):
  {{1}}  .  {{1},{1,1}}  {{1,1},{1,1}}  {{1},{1},{1,1,1}}
            {{1},{2,2}}  {{1,1},{2,2}}  {{1},{1},{1,2,2}}
            {{1},{2,3}}  {{1,2},{1,2}}  {{1},{1},{2,2,2}}
            {{2},{1,2}}  {{1,2},{2,2}}  {{1},{1},{2,3,3}}
                         {{1,2},{3,3}}  {{1},{1},{2,3,4}}
                         {{1,2},{3,4}}  {{1},{2},{1,2,2}}
                         {{1,3},{2,3}}  {{1},{2},{2,2,2}}
                                        {{1},{2},{2,3,3}}
                                        {{1},{2},{3,3,3}}
                                        {{1},{2},{3,4,4}}
                                        {{1},{2},{3,4,5}}
                                        {{1},{3},{2,3,3}}
                                        {{1},{4},{2,3,4}}
                                        {{2},{2},{1,2,2}}
                                        {{2},{3},{1,2,3}}
                                        {{3},{3},{1,2,3}}
		

Crossrefs

The version for partitions is A047993.
The co-balanced version is A319616.
The cross-balanced version is A340651.
The twice-balanced version is A340652.
The version for factorizations is A340653.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
- A098124 counts balanced compositions.
- A106529 lists balanced numbers.
- A340596 counts co-balanced factorizations.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.

Programs

  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n,polcoef(G(n,n,k,y),k,y) - polcoef(G(n,n,k-1,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 15 2024

A321615 Triangle read by rows: T(n,k) is the number of k X k integer matrices with sum of elements n, with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 6, 3, 1, 0, 1, 9, 13, 3, 1, 0, 1, 17, 38, 20, 3, 1, 0, 1, 23, 97, 82, 23, 3, 1, 0, 1, 36, 217, 311, 126, 24, 3, 1, 0, 1, 46, 453, 968, 624, 151, 24, 3, 1, 0, 1, 65, 868, 2825, 2637, 933, 162, 24, 3, 1, 0, 1, 80, 1585, 7394, 10098, 4942, 1132, 165, 24, 3, 1
Offset: 0

Views

Author

Andrew Howroyd, Nov 14 2018

Keywords

Comments

Also the number of non-isomorphic multiset partitions of weight n with k parts and k vertices, where the weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Nov 18 2018

Examples

			Triangle begins:
    1
    0  1
    0  1    1
    0  1    2    1
    0  1    6    3    1
    0  1    9   13    3    1
    0  1   17   38   20    3    1
    0  1   23   97   82   23    3    1
    0  1   36  217  311  126   24    3    1
    0  1   46  453  968  624  151   24    3    1
    0  1   65  868 2825 2637  933  162   24    3    1
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 24 2018, from PARI *)
  • PARI
    \\ See A318795 for M.
    T(n, k) = if(k==0, n==0, M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n));
    
  • PARI
    \\ See A340652 for G.
    T(n)={[Vecrev(p) | p<-Vec(1 + sum(k=1, n, y^k*(polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Column k=0 inserted by Andrew Howroyd, Jan 17 2024

A340651 Number of non-isomorphic cross-balanced multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 26, 77, 220, 677, 2098, 6756, 22101, 74264, 253684, 883795, 3130432, 11275246, 41240180, 153117873, 576634463, 2201600769, 8517634249, 33378499157, 132438117118, 531873247805, 2161293783123, 8883906870289, 36928576428885, 155196725172548, 659272353608609, 2830200765183775
Offset: 0

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

We define a multiset partition to be cross-balanced if it uses exactly as many distinct vertices as the greatest size of a part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 16 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}
         {{1},{1}}  {{1},{2,2}}    {{1,1},{2,2}}
                    {{2},{1,2}}    {{1,2},{1,2}}
                    {{1},{1},{1}}  {{1,2},{2,2}}
                                   {{1},{2,3,3}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{2,2}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{2,2}}
                                   {{2},{2},{1,2}}
                                   {{1},{1},{1},{1}}
		

Crossrefs

The co-balanced version is A319616.
The balanced version is A340600.
The twice-balanced version is A340652.
The version for factorizations is A340654.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
- A047993 counts balanced partitions.
- A106529 lists balanced numbers.
- A340596 counts co-balanced factorizations.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n, G(k,n,k) - G(k-1,n,k) - G(k,n,k-1) + G(k-1,n,k-1)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 15 2024
Showing 1-8 of 8 results.