cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A317084 Number of integer partitions of n whose multiplicities are weakly increasing and span an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 17, 23, 27, 34, 38, 50, 54, 70, 79, 97, 107, 135, 148, 180, 205, 243, 270, 328, 360, 429, 480, 561, 625, 738, 810, 949, 1057, 1219, 1349, 1571, 1723, 1986, 2206, 2515, 2776, 3188, 3496, 3983, 4408, 4980, 5485, 6228, 6826
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Examples

			The a(7) = 6 integer partitions are (7), (61), (52), (43), (421), (331).
		

Crossrefs

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Table[Length[Select[IntegerPartitions[n],And[normalQ[Length/@Split[#]],OrderedQ[Reverse[Length/@Split[#]]]]&]],{n,60}]

A335941 Number of partitions of n such that the set s of parts and multiplicities satisfies s = {1..max(s)}.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 2, 5, 5, 9, 8, 15, 11, 14, 22, 28, 30, 36, 37, 53, 60, 80, 83, 104, 114, 148, 157, 201, 218, 283, 284, 362, 400, 455, 518, 624, 697, 807, 907, 1036, 1181, 1368, 1531, 1727, 1990, 2197, 2563, 2849, 3182, 3568, 4095, 4548, 5143, 5720, 6420
Offset: 0

Views

Author

Alois P. Heinz, Jun 30 2020

Keywords

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 2: 11, 2.
a(3) = 1: 21.
a(4) = 1: 211.
a(5) = 4: 2111, 221, 311, 32.
a(6) = 2: 2211, 321.
a(7) = 5: 22111, 2221, 3211, 322, 331.
a(8) = 5: 22211, 32111, 3221, 3311, 332.
a(9) = 9: 222111, 321111, 32211, 3222, 33111, 3321, 42111, 4311, 432.
a(10) = 8: 2221111, 322111, 32221, 331111, 33211, 4222, 4321, 433.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i,s) option remember;
         `if`(n=0, `if`(s={$0..max(s)}, 1, 0), `if`(i<1, 0, add(
            b(n-i*j, i-1, {s[], j, `if`(j=0, 0, i)}), j=0..n/i)))
        end:
    a:= n-> b(n, floor((sqrt(1+8*(n+1))-1)/2), {0}):
    seq(a(n), n=0..55);
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] =
         If[n == 0, If[s == Range[0, Max[s]], 1, 0], If[i < 1, 0, Sum[
         b[n-i*j, i-1, Union@Flatten@{s, j, If[j == 0, 0, i]}], {j, 0, n/i}]]];
    a[n_] := b[n, Floor[(Sqrt[1 + 8*(n + 1)] - 1)/2], {0}];
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)

A330937 Number of strictly recursively normal integer partitions of n.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 15, 20, 27, 35, 49, 58, 81, 100, 126, 160, 206, 246, 316, 374, 462, 564, 696, 813, 1006, 1195, 1441, 1701, 2058, 2394, 2896, 3367, 4007, 4670, 5542, 6368, 7540, 8702, 10199, 11734, 13760, 15734, 18384, 21008, 24441, 27893, 32380, 36841
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A sequence is strictly recursively normal if either it empty, its run-lengths are distinct (strict), or its run-lengths cover an initial interval of positive integers (normal) and are themselves a strictly recursively normal sequence.

Examples

			The a(1) = 1 through a(9) = 15 partitions:
  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)     (9)
            (21)  (31)   (32)   (42)   (43)    (53)    (54)
                  (211)  (41)   (51)   (52)    (62)    (63)
                         (221)  (321)  (61)    (71)    (72)
                         (311)  (411)  (322)   (332)   (81)
                                       (331)   (422)   (432)
                                       (421)   (431)   (441)
                                       (511)   (521)   (522)
                                       (3211)  (611)   (531)
                                               (3221)  (621)
                                               (4211)  (711)
                                                       (3321)
                                                       (4221)
                                                       (4311)
                                                       (5211)
                                                       (32211)
		

Crossrefs

The narrow instead of strict version is A332272.
A wide instead of strict version is A332295(n) - 1 for n > 1.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[ptn=={},UnsameQ@@qtn,And[normQ[qtn],recnQ[qtn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
Previous Showing 31-33 of 33 results.