A322282 Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 8).
1, 1, 1, 1, 1, 1, 1, 1, 2, 18, 162, 1122, 6402, 31746, 141570, 580866, 2241096, 8693256, 43232904, 362491272, 4067218584, 45304757784, 459941563224, 4236342378840, 35804034476496, 281634733757520, 2106753678778320, 15739783039815120
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..537
- David Galvin, John Engbers, and Clifford Smyth, Reciprocals of thinned exponential series, arXiv:2303.14057 [math.CO], 2023.
- Ira M. Gessel, Reciprocals of exponential polynomials and permutation enumeration, arXiv:1807.09290 [math.CO], 2018.
Crossrefs
Programs
-
Mathematica
m = 28; CoefficientList[1/Normal[Exp[-x]+O[x]^8]+O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Feb 24 2019 *)
-
PARI
N=40; x='x+O('x^N); Vec(serlaplace(1/sum(k=0, 7, (-x)^k/k!)))
Formula
E.g.f.: 1/(1 - x + x^2/2! - x^3/3! + x^4/4! - x^5/5! + x^6/6! - x^7/7!).