cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A325332 Number of totally abnormal integer partitions of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 8, 1, 7, 5, 10, 2, 16, 4, 21, 15, 24, 17, 49, 29, 53, 53, 84, 65, 121, 92, 148, 141, 186, 179, 280, 223, 317, 318, 428, 387, 576, 512, 700, 734, 899, 900, 1260, 1207, 1551, 1668, 2041, 2109, 2748, 2795, 3463, 3775, 4446
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers. A multiset is totally abnormal if it is not normal and either it is a singleton or its multiplicities form a totally abnormal multiset.
The Heinz numbers of these partitions are given by A325372.

Examples

			The a(2) = 1 through a(12) = 8 totally abnormal partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)   (C)
            (22)       (33)        (44)    (333)  (55)           (66)
                       (222)       (2222)         (3322)         (444)
                                   (3311)         (4411)         (3333)
                                                  (22222)        (4422)
                                                                 (5511)
                                                                 (222222)
                                                                 (333111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    antinrmQ[ptn_]:=!normQ[ptn]&&(Length[ptn]==1||antinrmQ[Sort[Length/@Split[ptn]]]);
    Table[Length[Select[IntegerPartitions[n],antinrmQ]],{n,0,30}]

A330937 Number of strictly recursively normal integer partitions of n.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 15, 20, 27, 35, 49, 58, 81, 100, 126, 160, 206, 246, 316, 374, 462, 564, 696, 813, 1006, 1195, 1441, 1701, 2058, 2394, 2896, 3367, 4007, 4670, 5542, 6368, 7540, 8702, 10199, 11734, 13760, 15734, 18384, 21008, 24441, 27893, 32380, 36841
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A sequence is strictly recursively normal if either it empty, its run-lengths are distinct (strict), or its run-lengths cover an initial interval of positive integers (normal) and are themselves a strictly recursively normal sequence.

Examples

			The a(1) = 1 through a(9) = 15 partitions:
  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)     (9)
            (21)  (31)   (32)   (42)   (43)    (53)    (54)
                  (211)  (41)   (51)   (52)    (62)    (63)
                         (221)  (321)  (61)    (71)    (72)
                         (311)  (411)  (322)   (332)   (81)
                                       (331)   (422)   (432)
                                       (421)   (431)   (441)
                                       (511)   (521)   (522)
                                       (3211)  (611)   (531)
                                               (3221)  (621)
                                               (4211)  (711)
                                                       (3321)
                                                       (4221)
                                                       (4311)
                                                       (5211)
                                                       (32211)
		

Crossrefs

The narrow instead of strict version is A332272.
A wide instead of strict version is A332295(n) - 1 for n > 1.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[ptn=={},UnsameQ@@qtn,And[normQ[qtn],recnQ[qtn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
Previous Showing 21-22 of 22 results.