cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A317931 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A002487, Stern's Diatomic sequence.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 3, 5, 3, 3, 5, 3, 5, 3, 1, 35, 5, 3, 7, 9, 5, 5, 7, 5, 19, 5, 5, 9, 7, 1, 5, 63, 1, 5, 9, 9, 11, 7, 5, 15, 11, 5, 13, 15, 13, 7, 9, 35, 27, 19, 7, 15, 13, 5, 7, 15, 3, 7, 11, 3, 9, 5, -7, 231, -1, 1, 11, 15, 7, 9, 13, 15, 15, 11, 47, 21, 19, 5, 13, 105, 27, 11, 19, 15, 27, 13, 11, 25, 17, 13, 23, 21, 11, 9, 1, 63
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Crossrefs

Cf. A002487, A317932 (denominators, conjectured).

Programs

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A002487(n) - Sum_{d|n, d>1, d 1.

A318666 a(n) = 2^{the 3-adic valuation of n}.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 16, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Crossrefs

Programs

  • Magma
    [2^Valuation(n, 3): n in [1..100]]; // Vincenzo Librandi, Mar 19 2020
  • Mathematica
    Table[2^IntegerExponent[n, 3], {n, 100}] (* Vincenzo Librandi, Mar 19 2020 *)
  • PARI
    A318666(n) = 2^valuation(n,3);
    
  • PARI
    A318666(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(3 == f[i,1], m *= 2^f[i,2])); (m); };
    

Formula

a(n) = 2^A007949(n).
a(n) = A046644(n)/A317932(n).
Multiplicative with a(3^e) = 2^e, a(p^e) = 1 for any other primes.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Nov 17 2022
Dirichlet g.f.: zeta(s)*(3^s-1)/(3^s-2). - Amiram Eldar, Jan 03 2023
More precise asymptotics: Sum_{k=1..n} a(k) ~ 2*n + zeta(log(2)/log(3)) * n^(log(2)/log(3)) / (2*log(2)). - Vaclav Kotesovec, Jun 25 2024

A318669 Numerators of the sequence whose Dirichlet convolution with itself yields A065769 ("Prime cascade").

Original entry on oeis.org

1, 1, 1, 7, 3, 1, 5, 25, 5, 3, 7, 7, 11, 5, 3, 363, 13, 5, 17, 21, 5, 7, 19, 25, 51, 11, 13, 35, 23, 3, 29, 1335, 7, 13, 15, 35, 31, 17, 11, 75, 37, 5, 41, 49, 15, 19, 43, 363, 115, 51, 13, 77, 47, 13, 21, 125, 17, 23, 53, 21, 59, 29, 25, 9923, 33, 7, 61, 91, 19, 15, 67, 125, 71, 31, 51, 119, 35, 11, 73, 1089, 139, 37, 79, 35, 39, 41, 23
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Comments

Multiplicative because A065769 and A317932 are.

Crossrefs

Cf. A065769, A317932 (denominators).

Programs

  • PARI
    up_to = 1+(2^16);
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A065769(n) = { my(f=factor(n>>valuation(n,2))[, 1]~); (A003557(n) * factorback(vector(#f,i,precprime(f[i]-1)))); }; \\ Antti Karttunen, Sep 03 2018
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA065769(n)));
    A318669(n) = numerator(v318669_aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A065769(n) - Sum_{d|n, d>1, d 1.
Previous Showing 11-13 of 13 results.