cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A342010 Number of times the term 2 has occurred so far in the range 1..n of A073751.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2021

Keywords

Comments

Number of prime factors (with multiplicity) in the primorial deflation of the n-th colossally abundant number [A342012(n) = A319626(A004490(n))], provided that the quotient A004490(1+n)/A004490(n) is always a prime.

Crossrefs

Programs

  • Mathematica
    Block[{a = {2}, b, c, f, k, m, n, q = {1}, lim = 105}, f[w_] := Block[{p = w[[1]], i = w[[2]]}, ((Log[(p^(i + 2) - 1)/(p^(i + 1) - 1)])/Log[p]) - 1]; m = {{2, 1}, {3, 0}}; c = 1; b = Array[f[m[[#]]] &, c + 1]; For[n = 2, n <= lim, n++, k = Position[b, Max[b]][[1, 1]]; AppendTo[a, m[[k, 1]]]; AppendTo[q, Boole[m[[k, 1]] == 2]]; m[[k, 2]]++; If[k > c, c++; AppendTo[m, {Prime[k + 1], 0}]; AppendTo[b, f[m[[-1]]]]]; b[[k]] = f[m[[k]]]]; Accumulate@ q] (* Michael De Vlieger, Mar 12 2021, after T. D. Noe at A073751 *)
  • PARI
    v073751 = readvec("b073751_to.txt"); \\ Prepared with gawk '{ print $2 }' < b073751.txt > b073751_to.txt
    A073751(n) = v073751[n];
    A342010(n) = sum(k=1,n,(2==A073751(k)));

Formula

a(n) = Sum_{k=1..n} [2==A073751(k)], where [ ] is the Iverson bracket.
a(n) = A001222(A342012(n)) = A000120(A342013(n)).

A346099 a(n) = gcd(n, A346098(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 1, 1, 5, 11, 3, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 3, 1, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 1, 37, 19, 13, 1, 41, 1, 43, 11, 1, 23, 47, 1, 1, 1, 17, 13, 53, 9, 11, 7, 19, 29, 59, 1, 61, 31, 1, 4, 13, 11, 67, 17, 23, 1, 71, 3, 73, 37, 25, 19, 1, 13, 79, 1, 1, 41, 83, 1, 17, 43, 29, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Only powers of primes (A000961) occur as terms. A346100 lists the exponents.

Crossrefs

Cf. A346090 (positions of ones).

Programs

Formula

a(n) = gcd(n, A346098(n)) = gcd(n, A064989(A319626(A324886(n)))).

A387164 Numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)), and that satisfy Euler's condition for odd perfect numbers (A228058).

Original entry on oeis.org

117, 153, 333, 369, 425, 477, 549, 637, 657, 845, 873, 909, 925, 1017, 1053, 1233, 1325, 1377, 1413, 1421, 1445, 1525, 1557, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2097, 2169, 2225, 2313, 2493, 2525, 2529, 2597, 2637, 2725, 2817, 2825, 2853, 2989, 2997, 3033, 3177, 3321, 3357, 3425, 3509, 3573, 3577, 3609, 3725
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2025

Keywords

Comments

Terms k of A228058 for which A322361(k) = A342671(k), or equally, such that A319626(k) = A349164(k).

Crossrefs

Intersection of A228058 and A349174.
Union of A387166 and A387167.
Differs from its subsequence A387167 for the first time at n=201, where a(201) = 14157, while A387167(201) = 14225.
Cf. also A371082.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
    isA349174(n) = if(!(n%2), 0, my(u=A003961(n)); gcd(u, sigma(n))==gcd(u, n));
    isA387164(n) = (isA228058(n) && isA349174(n));

A349177 Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) = 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 63, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169, 173
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2021

Keywords

Comments

Odd numbers k for which k and A003961(k) are relatively prime, and also sigma(k) and A003961(k) are coprime.

Crossrefs

Subsequence of A349174 from this first differs by not having term 135 (see A349176).
Intersection of A319630 and A349174, or equally, intersection of A349165 and A349174.

Programs

  • Mathematica
    Select[Range[1, 173, 2], GCD[#1, #3] == GCD[#2, #3] == 1 & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349177(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (1==t)&&(gcd(u,sigma(n))==t));

A366876 Lexicographically earliest infinite sequence such that a(i) = a(j) => A337376(i) = A337376(j) for all i, j >= 0, where A337376 is the primorial deflation (numerator) of Doudna sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 6, 7, 8, 9, 5, 10, 11, 6, 12, 13, 14, 15, 16, 17, 8, 5, 18, 19, 20, 21, 11, 6, 22, 12, 23, 24, 25, 26, 27, 28, 29, 16, 30, 31, 14, 15, 8, 9, 32, 18, 33, 34, 35, 36, 37, 38, 20, 11, 11, 39, 40, 41, 22, 12, 42, 23, 43, 44, 45, 46, 47, 48, 49, 27, 50, 51, 52, 53, 29, 54, 55, 30, 56, 57, 25, 26, 27, 28, 14
Offset: 0

Views

Author

Antti Karttunen, Oct 26 2023

Keywords

Comments

Restricted growth sequence transform of A337376.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    A337376(n) = A319626(A005940(1+n));
    v366876 = rgs_transform(vector(1+up_to,n,A337376(n-1)));
    A366876(n) = v366876[1+n];

A349175 Odd numbers k for which gcd(k, A003961(k)) <> gcd(sigma(k), A003961(k)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

15, 27, 35, 45, 57, 65, 75, 77, 87, 99, 105, 143, 165, 171, 175, 177, 189, 195, 205, 221, 225, 231, 237, 245, 255, 261, 267, 297, 301, 315, 323, 325, 327, 345, 351, 375, 385, 399, 405, 415, 417, 429, 437, 447, 459, 465, 485, 495, 513, 525, 531, 537, 539, 555, 567, 585, 595, 597, 605, 609, 615, 621, 627, 629, 645
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Odd numbers for which A348994(n) <> A349161(n).
Equally, odd numbers such that A319626(n) <> A349164(n).

Crossrefs

Cf. A349169, A349174 (complement among the odd numbers).

Programs

  • Mathematica
    Select[Range[1, 645, 2], GCD[#1, #3] != GCD[#2, #3] & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349175(n) = if(!(n%2),0,my(u=A003961(n)); gcd(u,sigma(n))!=gcd(u,n));
Previous Showing 31-36 of 36 results.