A321655 Number of distinct row/column permutations of strict plane partitions of n.
1, 1, 1, 5, 5, 9, 29, 33, 53, 77, 225
Offset: 0
Examples
The a(6) = 9 permutations of strict plane partitions: [6] [2 4] [4 2] [1 5] [5 1] [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1] . [1] [5] [0 1] [1 0] [2 3] [3 2] [2] [4] [0 2] [1 3] [2 0] [3 1] [5] [1] [2 3] [3 2] [0 1] [1 0] [4] [2] [1 3] [0 2] [3 1] [2 0] . [1] [1] [2] [2] [3] [3] [2] [3] [1] [3] [1] [2] [3] [2] [3] [1] [2] [1]
Crossrefs
Programs
-
Mathematica
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@Length/@Split[#],OrderedQ[Sort[Map[Last,GatherBy[Sort[Reverse/@#],First],{2}],submultisetQ],submultisetQ],OrderedQ[Sort[Sort/@Map[Last,GatherBy[#,First],{2}],submultisetQ],submultisetQ]]&]],{n,5}]
Comments