cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321585 Number of connected nonnegative integer matrices with sum of entries equal to n and no zero rows or columns.

Original entry on oeis.org

1, 1, 3, 11, 52, 312, 2290, 19920, 200522, 2293677, 29389005, 416998371, 6490825772, 109972169413, 2014696874717, 39684502845893, 836348775861331, 18777970539419957, 447471215460930665, 11279275874429302811, 299844572529989373703, 8383794111721619471384, 245956060268568277412668
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.

Examples

			The a(3) = 11 matrices:
  [3] [2 1] [1 2] [1 1 1]
.
  [2] [1 1] [1 1] [1] [1 0] [0 1]
  [1] [1 0] [0 1] [2] [1 1] [1 1]
.
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,5}] (* Mathematica 7.0+ *)
  • PARI
    NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n,  sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))}
    ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R}
    seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j+k-1,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~))))))} \\ Andrew Howroyd, Jan 17 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 17 2024

A321588 Number of connected nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows and columns.

Original entry on oeis.org

1, 1, 1, 9, 29, 181, 1285, 10635, 102355, 1118021, 13637175, 184238115, 2727293893, 43920009785, 764389610843, 14297306352937, 286014489487815, 6093615729757841, 137750602009548533, 3293082026520294529, 83006675263513350581, 2200216851785981586729, 61180266502369886181253
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.

Examples

			The a(4) = 29 matrices:
4 31 13
.
3 21 21 20 12 12 11 110 11 110 101 101 1 10 10 02 011 011 01 01
1 10 01 11 10 01 20 101 02 011 110 011 3 21 12 11 110 101 21 12
.
11 11 10 10 01 01
10 01 11 01 11 10
01 10 01 11 10 11
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,6}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q,t,wf)={prod(j=1, #q, wf(t*q[j]))-1}
    Q(m,n,wf=w->2)={my(s=0); forpart(p=m, s+=(-1)^#p*permcount(p)*exp(-sum(t=1, n, (-1)^t*x^t*K(p,t,wf)/t, O(x*x^n))) ); Vec((-1)^m*serchop(serlaplace(s),1), -n)}
    ConnectedMats(M)={my([m, n]=matsize(M), R=matrix(m, n)); for(m=1, m, for(n=1, n, R[m, n] = M[m, n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1, i-1)*binomial(n, j)*R[i, j]*M[m-i, n-j])))); R}
    seq(n)={my(R=vectorv(n,m,Q(m,n,w->1/(1 - y^w) + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum( vecsum( Vec( ConnectedMats( Mat(R))))))} \\ Andrew Howroyd, Jan 24 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 24 2024

A321584 Number of connected (0,1)-matrices with n ones and no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 6, 27, 159, 1154, 9968, 99861, 1138234, 14544650, 205927012, 3199714508, 54131864317, 990455375968, 19488387266842, 410328328297512, 9205128127109576, 219191041679766542, 5521387415218119528, 146689867860276432637, 4099255234885039058842, 120199458455807733040338
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.

Examples

			The a(4) = 27 matrices:
  [1111]
.
  [111][111][111][11][110][110][101][101][100][011][011][010][001]
  [100][010][001][11][101][011][110][011][111][110][101][111][111]
.
  [11][11][11][11][10][10][10][10][01][01][01][01]
  [10][10][01][01][11][11][10][01][11][11][10][01]
  [10][01][10][01][10][01][11][11][10][01][11][11]
.
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,6}] (* Mathematica 7.0+ *)
  • PARI
    NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))}
    ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R}
    seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~)) ))))} \\ Andrew Howroyd, Jan 17 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 17 2024

A319644 Number of non-isomorphic weight-n antichains of distinct multisets whose dual is also an antichain of distinct multisets.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 18, 31, 73, 162, 413
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 8 antichains:
1: {{1}}
2: {{1,1}}
   {{1},{2}}
3: {{1,1,1}}
   {{1},{2,2}}
   {{1},{2},{3}}
4: {{1,1,1,1}}
   {{1},{2,2,2}}
   {{1,1},{2,2}}
   {{1},{2},{3,3}}
   {{1},{2},{3},{4}}
5: {{1,1,1,1,1}}
   {{1},{2,2,2,2}}
   {{1,1},{1,2,2}}
   {{1,1},{2,2,2}}
   {{1},{2},{3,3,3}}
   {{1},{2,2},{3,3}}
   {{1},{2},{3},{4,4}}
   {{1},{2},{3},{4},{5}}
		

Crossrefs

Formula

Euler transform of A319629.
Showing 1-4 of 4 results.