cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A120733 Number of matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.

Original entry on oeis.org

1, 1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161, 3581539973, 82171451025, 2055919433081, 55710251353953, 1625385528173693, 50800411296363617, 1693351638586070209, 59966271207156833313, 2248276994650395873861, 88969158875611127548481
Offset: 0

Views

Author

Vladeta Jovovic, Aug 18 2006, Aug 21 2006

Keywords

Comments

The number of such matrices up to rows/columns permutations are given in A007716.
Dimensions of the graded components of the Hopf algebra MQSym (Matrix quasi-symmetric functions). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 23 2006
From Kyle Petersen, Aug 10 2016: (Start)
Number of cells in the two-sided Coxeter complex of the symmetric group. Inclusion of faces corresponds to refinement of matrices, see Section 6 of Petersen paper. The number of cells in the type B analog is given by A275787.
Also known as "two-way contingency tables" in the Diaconis-Gangolli reference. (End)

Examples

			a(2) = 5:
[1 0]   [0 1]   [1]   [1 1]   [2]
[0 1]   [1 0]   [1]
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(3) = 33 matrices:
  [3][21][12][111]
.
  [2][20][11][11][110][101][1][10][10][100][02][011][01][01][010][001]
  [1][01][10][01][001][010][2][11][02][011][10][100][20][11][101][110]
.
  [1][10][10][10][100][100][01][01][010][01][010][001][001]
  [1][10][01][01][010][001][10][10][100][01][001][100][010]
  [1][01][10][01][001][010][10][01][001][10][100][010][100]
(End)
		

Crossrefs

Row sums of A261781.

Programs

  • Maple
    t1 := M -> add( add( add( (-1)^(n-j)*binomial(n, j)*((1-x)^(-j)-1)^m, j=0..n), n=0..M), m=0..M); s := series(t1(20),x,20); gfun[seriestolist](%); # N. J. A. Sloane, Jan 14 2009
  • Mathematica
    a[n_] := Sum[2^(-2-r-s)*Binomial[n+r*s-1, n], {r, 0, Infinity}, {s, 0, Infinity}]; Table[Print[an = a[n]]; an, {n, 0, 19}] (* Jean-François Alcover, May 15 2012, after Vladeta Jovovic *)
    Flatten[{1,Table[1/n!*Sum[(-1)^(n-k)*StirlingS1[n,k]*Sum[m!*StirlingS2[k, m],{m,k}]^2,{k,n}],{n,20}]}] (* Vaclav Kotesovec, May 07 2014 *)
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)

Formula

a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n-k)*Stirling1(n,k)*A000670(k)^2.
G.f.: Sum_{m>=0,n>=0} Sum_{j=0..n} (-1)^(n-j)*C(n,j)*((1-x)^(-j)-1)^m.
a(n) = Sum_{r>=0,s>=0} binomial(r*s+n-1,n)/2^(r+s+2).
G.f.: Sum_{n>=0} 1/(2-(1-x)^(-n))/2^(n+1). - Vladeta Jovovic, Oct 30 2006
a(n) ~ 2^(log(2)/2-2) * n! / (log(2))^(2*n+2). - Vaclav Kotesovec, May 07 2014

Extensions

More terms from N. J. A. Sloane, Jan 14 2009

A321584 Number of connected (0,1)-matrices with n ones and no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 6, 27, 159, 1154, 9968, 99861, 1138234, 14544650, 205927012, 3199714508, 54131864317, 990455375968, 19488387266842, 410328328297512, 9205128127109576, 219191041679766542, 5521387415218119528, 146689867860276432637, 4099255234885039058842, 120199458455807733040338
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.

Examples

			The a(4) = 27 matrices:
  [1111]
.
  [111][111][111][11][110][110][101][101][100][011][011][010][001]
  [100][010][001][11][101][011][110][011][111][110][101][111][111]
.
  [11][11][11][11][10][10][10][10][01][01][01][01]
  [10][10][01][01][11][11][10][01][11][11][10][01]
  [10][01][10][01][10][01][11][11][10][01][11][11]
.
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,6}] (* Mathematica 7.0+ *)
  • PARI
    NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))}
    ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R}
    seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~)) ))))} \\ Andrew Howroyd, Jan 17 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 17 2024

A321680 Number of non-isomorphic weight-n connected antichains (not necessarily strict) of multisets with multiset density -1.

Original entry on oeis.org

1, 1, 3, 4, 9, 14, 39, 80, 216, 538, 1460
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset trees:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
                    {{1},{1},{1}}  {{1,2,3,3}}        {{1,2,2,3,3}}
                                   {{1,2,3,4}}        {{1,2,3,3,3}}
                                   {{1,1},{1,1}}      {{1,2,3,4,4}}
                                   {{1,2},{2,2}}      {{1,2,3,4,5}}
                                   {{1,3},{2,3}}      {{1,1},{1,2,2}}
                                   {{1},{1},{1},{1}}  {{1,2},{2,2,2}}
                                                      {{1,2},{2,3,3}}
                                                      {{1,3},{2,3,3}}
                                                      {{1,4},{2,3,4}}
                                                      {{3,3},{1,2,3}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

A321681 Number of non-isomorphic weight-n connected strict antichains of multisets with multiset density -1.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 35, 77, 205, 517, 1399
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 13 trees:
  {{1}}  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
         {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
                  {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                             {{1,2,3,3}}    {{1,2,2,3,3}}
                             {{1,2,3,4}}    {{1,2,3,3,3}}
                             {{1,2},{2,2}}  {{1,2,3,4,4}}
                             {{1,3},{2,3}}  {{1,2,3,4,5}}
                                            {{1,1},{1,2,2}}
                                            {{1,2},{2,2,2}}
                                            {{1,2},{2,3,3}}
                                            {{1,3},{2,3,3}}
                                            {{1,4},{2,3,4}}
                                            {{3,3},{1,2,3}}
		

Crossrefs

A321484 Number of non-isomorphic self-dual connected multiset partitions of weight n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 20, 35, 78, 141
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 9 multiset partitions:
  {{1}}  {{11}}  {{111}}    {{1111}}    {{11111}}      {{111111}}
                 {{2}{12}}  {{12}{12}}  {{11}{122}}    {{112}{122}}
                            {{2}{122}}  {{12}{122}}    {{12}{1222}}
                                        {{2}{1222}}    {{2}{12222}}
                                        {{2}{13}{23}}  {{22}{1122}}
                                        {{3}{3}{123}}  {{12}{13}{23}}
                                                       {{2}{13}{233}}
                                                       {{3}{23}{123}}
                                                       {{3}{3}{1233}}
		

Crossrefs

Showing 1-5 of 5 results.