cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A321585 Number of connected nonnegative integer matrices with sum of entries equal to n and no zero rows or columns.

Original entry on oeis.org

1, 1, 3, 11, 52, 312, 2290, 19920, 200522, 2293677, 29389005, 416998371, 6490825772, 109972169413, 2014696874717, 39684502845893, 836348775861331, 18777970539419957, 447471215460930665, 11279275874429302811, 299844572529989373703, 8383794111721619471384, 245956060268568277412668
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.

Examples

			The a(3) = 11 matrices:
  [3] [2 1] [1 2] [1 1 1]
.
  [2] [1 1] [1 1] [1] [1 0] [0 1]
  [1] [1 0] [0 1] [2] [1 1] [1 1]
.
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,5}] (* Mathematica 7.0+ *)
  • PARI
    NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n,  sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))}
    ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R}
    seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j+k-1,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~))))))} \\ Andrew Howroyd, Jan 17 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 17 2024
Showing 1-1 of 1 results.