A321585 Number of connected nonnegative integer matrices with sum of entries equal to n and no zero rows or columns.
1, 1, 3, 11, 52, 312, 2290, 19920, 200522, 2293677, 29389005, 416998371, 6490825772, 109972169413, 2014696874717, 39684502845893, 836348775861331, 18777970539419957, 447471215460930665, 11279275874429302811, 299844572529989373703, 8383794111721619471384, 245956060268568277412668
Offset: 0
Keywords
Examples
The a(3) = 11 matrices: [3] [2 1] [1 2] [1 1 1] . [2] [1 1] [1 1] [1] [1 0] [0 1] [1] [1 0] [0 1] [2] [1 1] [1 1] . [1] [1] [1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,5}] (* Mathematica 7.0+ *)
-
PARI
NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))} ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R} seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j+k-1,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~))))))} \\ Andrew Howroyd, Jan 17 2024
Extensions
a(7) onwards from Andrew Howroyd, Jan 17 2024
Comments