cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A321184 Number of integer partitions of n that are the vertex-degrees of some multiset of nonempty sets, none of which is a proper subset of any other, with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 7, 6, 15, 15, 30
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Examples

			The a(2) = 1 through a(8) = 15 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (211)   (11111)  (222)     (3211)     (332)
               (1111)           (321)     (22111)    (422)
                                (2211)    (31111)    (431)
                                (3111)    (211111)   (2222)
                                (21111)   (1111111)  (3221)
                                (111111)             (3311)
                                                     (4211)
                                                     (22211)
                                                     (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
The a(6) = 7 integer partitions together with a realizing multi-antichain of each (the parts of the partition count the appearances of each vertex in the multi-antichain):
      (33): {{1,2},{1,2},{1,2}}
     (321): {{1,2},{1,2},{1,3}}
    (3111): {{1,2},{1,3},{1,4}}
     (222): {{1,2,3},{1,2,3}}
    (2211): {{1,2,3},{1,2,4}}
   (21111): {{1,2},{1,3,4,5}}
  (111111): {{1,2,3,4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    multanti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1,stableQ[#]]&];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[n],multanti[#]!={}&]],{n,8}]

A321678 Number of non-isomorphic weight-n strict antichains of sets with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 11, 13, 39, 67, 174
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 11 antichains:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}    {{1,2,3,4,5}}    {{1,2,3,4,5,6}}
                      {{1,2},{3,4}}  {{1,2},{3,4,5}}  {{1,2},{3,4,5,6}}
                      {{1,3},{2,3}}  {{1,4},{2,3,4}}  {{1,2,3},{4,5,6}}
                                                      {{1,2,5},{3,4,5}}
                                                      {{1,3,4},{2,3,4}}
                                                      {{1,5},{2,3,4,5}}
                                                      {{1,2},{1,3},{2,3}}
                                                      {{1,2},{3,4},{5,6}}
                                                      {{1,2},{3,5},{4,5}}
                                                      {{1,3},{2,4},{3,4}}
                                                      {{1,4},{2,4},{3,4}}
		

Crossrefs

A319255 Number of strict antichains of multisets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 41, 70, 123, 208, 355, 597
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2018

Keywords

Examples

			The a(1) = 1 through a(6) = 23 antichains:
  {{1}}  {{2}}    {{3}}      {{4}}        {{5}}          {{6}}
         {{1,1}}  {{1,2}}    {{1,3}}      {{1,4}}        {{1,5}}
                  {{1,1,1}}  {{2,2}}      {{2,3}}        {{2,4}}
                  {{1},{2}}  {{1,1,2}}    {{1,1,3}}      {{3,3}}
                             {{1},{3}}    {{1,2,2}}      {{1,1,4}}
                             {{1,1,1,1}}  {{1},{4}}      {{1,2,3}}
                             {{2},{1,1}}  {{2},{3}}      {{1},{5}}
                                          {{1,1,1,2}}    {{2,2,2}}
                                          {{1},{2,2}}    {{2},{4}}
                                          {{3},{1,1}}    {{1,1,1,3}}
                                          {{1,1,1,1,1}}  {{1,1,2,2}}
                                          {{1,1},{1,2}}  {{1},{2,3}}
                                          {{2},{1,1,1}}  {{2},{1,3}}
                                                         {{3},{1,2}}
                                                         {{4},{1,1}}
                                                         {{1,1,1,1,2}}
                                                         {{1,1},{1,3}}
                                                         {{1,1},{2,2}}
                                                         {{1},{2},{3}}
                                                         {{3},{1,1,1}}
                                                         {{1,1,1,1,1,1}}
                                                         {{1,2},{1,1,1}}
                                                         {{2},{1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,antiQ[#]]&]],{n,10}]

A320450 Number of strict antichains of sets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 10, 13, 19, 28, 47, 64, 98
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 19 antichains:
  {{1}}  {{2}}  {{3}}      {{4}}      {{5}}      {{6}}
                {{1,2}}    {{1,3}}    {{1,4}}    {{1,5}}
                {{1},{2}}  {{1},{3}}  {{2,3}}    {{2,4}}
                                      {{1},{4}}  {{1,2,3}}
                                      {{2},{3}}  {{1},{5}}
                                                 {{2},{4}}
                                                 {{1},{2,3}}
                                                 {{2},{1,3}}
                                                 {{3},{1,2}}
                                                 {{1},{2},{3}}
.
  {{7}}          {{8}}
  {{1,6}}        {{1,7}}
  {{2,5}}        {{2,6}}
  {{3,4}}        {{3,5}}
  {{1,2,4}}      {{1,2,5}}
  {{1},{6}}      {{1,3,4}}
  {{2},{5}}      {{1},{7}}
  {{3},{4}}      {{2},{6}}
  {{1},{2,4}}    {{3},{5}}
  {{2},{1,4}}    {{1},{2,5}}
  {{4},{1,2}}    {{1},{3,4}}
  {{1,2},{1,3}}  {{2},{1,5}}
  {{1},{2},{4}}  {{3},{1,4}}
                 {{4},{1,3}}
                 {{5},{1,2}}
                 {{1,2},{1,4}}
                 {{1,2},{2,3}}
                 {{1},{2},{5}}
                 {{1},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,And@@UnsameQ@@@#,antiQ[#]]&]],{n,10}]

A321484 Number of non-isomorphic self-dual connected multiset partitions of weight n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 20, 35, 78, 141
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 9 multiset partitions:
  {{1}}  {{11}}  {{111}}    {{1111}}    {{11111}}      {{111111}}
                 {{2}{12}}  {{12}{12}}  {{11}{122}}    {{112}{122}}
                            {{2}{122}}  {{12}{122}}    {{12}{1222}}
                                        {{2}{1222}}    {{2}{12222}}
                                        {{2}{13}{23}}  {{22}{1122}}
                                        {{3}{3}{123}}  {{12}{13}{23}}
                                                       {{2}{13}{233}}
                                                       {{3}{23}{123}}
                                                       {{3}{3}{1233}}
		

Crossrefs

Previous Showing 21-25 of 25 results.