cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A323304 Heinz numbers of integer partitions that cannot be arranged into a matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

The first term of this sequence absent from A106543 is 144.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Select[Range[2,1000],Select[ptnmats[#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]

A321725 Irregular triangle read by rows where T(n,k) is the number of d X d non-normal semi-magic squares with d = A027750(n,k) and sum of all entries equal to n.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 3, 24, 1, 120, 1, 4, 21, 720, 1, 5040, 1, 5, 282, 40320, 1, 55, 362880, 1, 6, 6210, 3628800, 1, 39916800, 1, 7, 120, 2008, 202410, 479001600, 1, 6227020800, 1, 8, 9135630, 87178291200, 1, 231, 153040, 1307674368000, 1, 9, 10147
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square is a nonnegative integer square matrix with all row sums and column sums equal to d, for some d|n.

Examples

			Triangle begins:
   1
   1   2
   1   6
   1   3  24
   1 120
   1   4  21 720
The T(6,2) = 4 semi-magic squares (zeros not shown):
  [3  ] [2 1] [1 2] [  3]
  [  3] [1 2] [2 1] [3  ]
The T(6,3) = 21 semi-magic squares (zeros not shown):
  [2    ] [2    ] [2    ] [1 1  ] [1 1  ] [1 1  ] [1 1  ]
  [  2  ] [  1 1] [    2] [1 1  ] [1   1] [  1 1] [    2]
  [    2] [  1 1] [  2  ] [    2] [  1 1] [1   1] [1 1  ]
.
  [1   1] [1   1] [1   1] [1   1] [  2  ] [  2  ] [  2  ]
  [1 1  ] [1   1] [  2  ] [  1 1] [2    ] [1   1] [    2]
  [  1 1] [  2  ] [1   1] [1 1  ] [    2] [1   1] [2    ]
.
  [  1 1] [  1 1] [  1 1] [  1 1] [    2] [    2] [    2]
  [2    ] [1 1  ] [1   1] [  1 1] [2    ] [1 1  ] [  2  ]
  [  1 1] [1   1] [1 1  ] [2    ] [  2  ] [1 1  ] [2    ]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[k]==Union[Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5},{k,Divisors[n]}]

Formula

T(n, A000005(n)) = n!. Sum_k T(n,k) = A321719(n). - Chai Wah Wu, Jan 15 2019

Extensions

a(15)-a(48) from Chai Wah Wu, Jan 15 2019
Edited by Peter Munn, Mar 05 2025

A322705 Number of k-uniform k-regular hypergraphs spanning n vertices, for some 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 472, 23342
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is k-uniform if all edges contain exactly k vertices, and k-regular if all vertices belong to exactly k edges. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 2 hypergraphs:
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 5 hypergraphs:
  {{1},{2},{3},{4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The a(5) = 26 hypergraphs:
  {{1},{2},{3},{4},{5}}
  {{1,2},{1,3},{2,4},{3,5},{4,5}}
  {{1,2},{1,3},{2,5},{3,4},{4,5}}
  {{1,2},{1,4},{2,3},{3,5},{4,5}}
  {{1,2},{1,4},{2,5},{3,4},{3,5}}
  {{1,2},{1,5},{2,3},{3,4},{4,5}}
  {{1,2},{1,5},{2,4},{3,4},{3,5}}
  {{1,3},{1,4},{2,3},{2,5},{4,5}}
  {{1,3},{1,4},{2,4},{2,5},{3,5}}
  {{1,3},{1,5},{2,3},{2,4},{4,5}}
  {{1,3},{1,5},{2,4},{2,5},{3,4}}
  {{1,4},{1,5},{2,3},{2,4},{3,5}}
  {{1,4},{1,5},{2,3},{2,5},{3,4}}
  {{1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5}}
  {{1,2,3},{1,2,4},{1,4,5},{2,3,5},{3,4,5}}
  {{1,2,3},{1,2,5},{1,3,4},{2,4,5},{3,4,5}}
  {{1,2,3},{1,2,5},{1,4,5},{2,3,4},{3,4,5}}
  {{1,2,3},{1,3,4},{1,4,5},{2,3,5},{2,4,5}}
  {{1,2,3},{1,3,5},{1,4,5},{2,3,4},{2,4,5}}
  {{1,2,4},{1,2,5},{1,3,4},{2,3,5},{3,4,5}}
  {{1,2,4},{1,2,5},{1,3,5},{2,3,4},{3,4,5}}
  {{1,2,4},{1,3,4},{1,3,5},{2,3,5},{2,4,5}}
  {{1,2,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5}}
  {{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,4,5}}
  {{1,2,5},{1,3,4},{1,4,5},{2,3,4},{2,3,5}}
  {{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}]

A322706 Regular triangle read by rows where T(n,k) is the number of k-regular k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 12, 12, 1, 0, 1, 70, 330, 70, 1, 0, 1, 465, 11205, 11205, 465, 1, 0, 1, 3507, 505505, 2531200, 505505, 3507, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is k-uniform if all edges contain exactly k vertices, and k-regular if all vertices belong to exactly k edges. The span of a hypergraph is the union of its edges.

Examples

			Triangle begins:
  1
  1       0
  1       1       0
  1       3       1       0
  1      12      12       1       0
  1      70     330      70       1       0
  1     465   11205   11205     465       1       0
  1    3507  505505 2531200  505505    3507       1       0
Row 4 counts the following hypergraphs:
  {{1}{2}{3}{4}}  {{12}{13}{24}{34}}  {{123}{124}{134}{234}}
                  {{12}{14}{23}{34}}
                  {{13}{14}{23}{24}}
		

Crossrefs

Row sums are A322705. Second column is A001205. Third column is A110101.

Programs

  • Mathematica
    Table[Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}]
Previous Showing 11-14 of 14 results.