cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A360969 Multiplicative with a(p^e) = e^2, p prime and e > 0.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 9, 4, 1, 1, 4, 1, 1, 1, 16, 1, 4, 1, 4, 1, 1, 1, 9, 4, 1, 9, 4, 1, 1, 1, 25, 1, 1, 1, 16, 1, 1, 1, 9, 1, 1, 1, 4, 4, 1, 1, 16, 4, 4, 1, 4, 1, 9, 1, 9, 1, 1, 1, 4, 1, 1, 4, 36, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 4, 4, 1, 1, 1, 16, 16, 1, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 27 2023

Keywords

Comments

From Bernard Schott, Feb 27 2023: (Start)
The three fixed points are 1, 4 and 16.
a(n) = 1 iff n is A005117.
a(n) = 4 iff n is in A060687. (End)

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
      mul(t^2, t = ifactors(n)[2][..,2]);
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 29 2023
  • Mathematica
    g[p_, e_] := e^2; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + 4*X^2 - X^3)/(1-X)^3)[n], ", "))
    
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1]=f[k,2]^2; f[k, 2]=1); factorback(f); \\ Michel Marcus, Feb 27 2023

Formula

Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + (3*p^s - 1) / (p^s*(p^s - 1)^2)).
Sum_{k=1..n} a(k) ~ c*n, where c = Product_{primes p} (1 + (3*p - 1) / (p*(p-1)^2)) = 8.18840474382698544967326709964388539461401085196013492328186138...
a(n) = A005361(n)^2.

A368474 Product of exponents of prime factorization of the numbers whose exponents in their prime power factorization are squares (A197680).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Comments

All the terms are squares (A000290).
The first position of k^2, for k = 1, 2, ..., is 1, 12, 331, 834, 21512290, 26588, ..., which is the position of A085629(k^2) in A197680.

Crossrefs

Similar sequences: A322327, A368472, A368473.

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, IntegerQ[Sqrt[#]] &], Times @@ e, Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e, ok); for(k = 1, kmax, e = factor(k)[, 2]; ok = 1; for(i = 1, #e, if(!issquare(e[i]), ok = 0; break)); if(ok, print1(vecprod(e), ", ")));}

Formula

a(n) = A005361(A197680(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/d) * Product_{p prime} (1 + Sum_{k>=1} k^2/p^(k^2)) = 1.16776748073813763932..., where d = A357016 is the asymptotic density of A197680.

A360996 Multiplicative with a(p^e) = 5*e, p prime and e > 0.

Original entry on oeis.org

1, 5, 5, 10, 5, 25, 5, 15, 10, 25, 5, 50, 5, 25, 25, 20, 5, 50, 5, 50, 25, 25, 5, 75, 10, 25, 15, 50, 5, 125, 5, 25, 25, 25, 25, 100, 5, 25, 25, 75, 5, 125, 5, 50, 50, 25, 5, 100, 10, 50, 25, 50, 5, 75, 25, 75, 25, 25, 5, 250, 5, 25, 50, 30, 25, 125, 5, 50, 25, 125, 5, 150
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e).
Cf. A082476.

Programs

  • Mathematica
    g[p_, e_] := 5*e; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+3*X+X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + 5*p^s/(p^s - 1)^2).
a(n) = A005361(n) * A082476(n).
Previous Showing 11-13 of 13 results.