A322368
Heinz numbers of disconnected integer partitions.
Original entry on oeis.org
1, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1
The sequence of all disconnected integer partitions begins: (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111), (421), (511), (322), (91), (21111), (331), (72), (611), (2221), (53), (4111).
Cf.
A054921,
A218970,
A286518,
A290103,
A304714,
A304716,
A305078,
A305079,
A322306,
A322307,
A322338,
A322367,
A322369.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Select[Range[200],Length[csm[primeMS/@primeMS[#]]]>1&]
A322369
Number of strict disconnected or empty integer partitions of n.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 10, 16, 17, 22, 26, 33, 36, 48, 52, 64, 76, 90, 101, 125, 142, 166, 192, 225, 250, 302, 339, 393, 451, 515, 581, 675, 762, 866, 985, 1122, 1255, 1441, 1612, 1823, 2059, 2318, 2591, 2930, 3275, 3668, 4118, 4605, 5125, 5749
Offset: 0
The a(3) = 1 through a(11) = 10 strict disconnected integer partitions:
(2,1) (3,1) (3,2) (5,1) (4,3) (5,3) (5,4) (7,3) (6,5)
(4,1) (3,2,1) (5,2) (7,1) (7,2) (9,1) (7,4)
(6,1) (4,3,1) (8,1) (5,3,2) (8,3)
(4,2,1) (5,2,1) (4,3,2) (5,4,1) (9,2)
(5,3,1) (6,3,1) (10,1)
(6,2,1) (7,2,1) (5,4,2)
(4,3,2,1) (6,4,1)
(7,3,1)
(8,2,1)
(5,3,2,1)
Cf.
A054921,
A218970,
A286518,
A304714,
A304716,
A305078,
A305079,
A322306,
A322307,
A322335,
A322337,
A322338,
A322367,
A322368.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,Length[zsm[#]]!=1]&]],{n,30}]
Comments