cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A322400 Heinz numbers of integer partitions with vertex-connectivity 1.

Original entry on oeis.org

3, 5, 7, 9, 11, 17, 19, 21, 23, 25, 27, 31, 41, 49, 53, 57, 59, 63, 67, 81, 83, 97, 103, 109, 115, 121, 125, 127, 131, 133, 147, 157, 159, 171, 179, 189, 191, 211, 227, 241, 243, 277, 283, 289, 311, 331, 343, 353, 361, 367, 371, 377, 393, 399, 401, 419, 431
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The sequence of all integer partitions with vertex-connectivity 1 begins: (2), (3), (4), (2,2), (5), (7), (8), (4,2), (9), (3,3), (2,2,2), (11), (13), (4,4), (16), (8,2), (17), (4,2,2), (19), (2,2,2,2), (23), (25), (27), (29), (9,3), (5,5), (3,3,3), (31), (32), (8,4), (4,4,2), (37), (16,2), (8,2,2), (41), (4,2,2,2), (43).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Select[Range[100],vertConn[primeMS[#]]==1&]

A327375 Number of set-systems with n vertices and vertex-connectivity 2.

Original entry on oeis.org

0, 0, 0, 72, 4752
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Crossrefs

BII-numbers for vertex-connectivity 2 are A327374.
BII-numbers for cut-connectivity 2 are A327082.
BII-numbers for spanning edge-connectivity 2 are A327108.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
Labeled graphs with vertex-connectivity 2 are A327198.
The vertex-connectivity of the set-system with BII-number n is A327051(n).
The enumeration of labeled graphs by vertex-connectivity is A327334.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],vertConnSys[Range[n],#]==2&]],{n,0,3}]

A322401 Number of strict integer partitions of n with edge-connectivity 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 5, 1, 6, 2, 7, 2, 13, 3, 14, 6, 18, 8, 28, 11, 33, 19, 38, 22, 54, 28, 71, 44, 83, 53, 110, 68, 134, 98, 154, 120, 209, 145, 253, 191, 302, 244, 385, 299, 459, 390, 553, 483, 693, 578
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

The edge-connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The a(30) = 11 strict integer partitions with edge-connectivity 1:
  (30),
  (10,9,6,5), (12,10,5,3), (14,7,6,3), (15,6,5,4), (15,10,3,2),
  (9,8,6,4,3), (10,9,6,3,2), (12,9,4,3,2), (15,6,4,3,2),
  (10,6,5,4,3,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&edgeConn[#]==1&]],{n,30}]
Previous Showing 11-13 of 13 results.