cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A327275 a(1) = 1; a(n) = Sum_{d|n, dA001615.

Original entry on oeis.org

1, 3, 4, 15, 6, 36, 8, 75, 28, 54, 12, 252, 14, 72, 72, 375, 18, 348, 20, 378, 96, 108, 24, 1620, 66, 126, 196, 504, 30, 936, 32, 1875, 144, 162, 144, 3108, 38, 180, 168, 2430, 42, 1248, 44, 756, 696, 216, 48, 9900, 120, 810, 216, 882, 54, 3108, 216, 3240, 240, 270, 60, 8568
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, DirichletConvolve[j, MoebiusMu[j]^2, j, n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 60}]
    nmax = 60; A[] = 0; Do[A[x] = x + Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} psi(k) * A(x^k).
a(p) = p + 1, where p is prime.
Previous Showing 11-11 of 11 results.