cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A323866 Number of aperiodic toroidal necklaces of positive integers summing to n.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 18, 42, 72, 145, 262, 522, 960, 1879, 3531, 6831, 13013, 25148, 48177, 93186, 179507, 347509, 671955, 1303257, 2527162, 4910681, 9545176, 18579471, 36183505, 70540861, 137603801, 268655547, 524842088, 1026067205, 2007118657, 3928564113
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional (Lyndon word) case is A059966.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Inequivalent representatives of the a(6) = 18 toroidal necklaces:
  [6] [1 5] [2 4] [1 1 4] [1 2 3] [1 3 2] [1 1 1 3] [1 1 2 2] [1 1 1 1 2]
.
  [1] [2] [1 1]
  [5] [4] [1 3]
.
  [1] [1] [1]
  [1] [2] [3]
  [4] [3] [2]
.
  [1] [1]
  [1] [1]
  [1] [2]
  [3] [2]
.
  [1]
  [1]
  [1]
  [1]
  [2]
		

Crossrefs

Programs

  • GAP
    List([0..30], A323866); # See A323861 for code; Andrew Howroyd, Aug 21 2019
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[If[n==0,1,Length[Union@@Table[Select[ptnmats[k],And[apermatQ[#],neckmatQ[#]]&],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]]],{n,0,10}]

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 21 2019

A086675 Number of n X n (0,1)-matrices modulo cyclic permutations of the rows.

Original entry on oeis.org

1, 2, 10, 176, 16456, 6710912, 11453291200, 80421421917440, 2305843009750581376, 268650182136584290872320, 126765060022823052739661424640, 241677817415439249618874010960064512, 1858395433210885261795036719974526548094976
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 27 2003

Keywords

Comments

Also the number of digraphical necklaces with n vertices. A digraphical necklace is defined to be a directed graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of directed graphs under rotation of the vertices. These are a kind of partially labeled digraphs. - Gus Wiseman, Mar 04 2019

Examples

			From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(2) = 10 digraphical necklace edge-sets:
  {}
  {(1,1)}
  {(1,2)}
  {(1,1),(1,2)}
  {(1,1),(2,1)}
  {(1,1),(2,2)}
  {(1,2),(2,1)}
  {(1,1),(1,2),(2,1)}
  {(1,1),(1,2),(2,2)}
  {(1,1),(1,2),(2,1),(2,2)}
(End)
		

Crossrefs

Cf. A000031 (binary necklaces), A000939 (cycle necklaces), A008965, A060690, A061417 (permutation necklaces), A184271, A192332 (graphical necklaces), A275527 (path necklaces), A323858 (toroidal necklaces), A323870.

Programs

  • Mathematica
    Table[Fold[ #1+EulerPhi[ #2] 2^(n^2 /#2)&, 0, Divisors[n]]/n, {n, 16}]
    (* second program *)
    rotdigra[g_,m_]:=Sort[g/.k_Integer:>If[k==m,1,k+1]];
    Table[Length[Select[Subsets[Tuples[Range[n],2]],#=={}||#==First[Sort[Table[Nest[rotdigra[#,n]&,#,j],{j,n}]]]&]],{n,0,4}] (* Gus Wiseman, Mar 04 2019 *)

Formula

a(n) = (1/n)*Sum_{ d divides n } phi(d)*2^(n^2/d) for n > 0, a(0) = 1.

Extensions

More terms from Wouter Meeussen, Jul 29 2003
a(0)=1 prepended by Gus Wiseman, Mar 04 2019

A324463 Number of graphical necklaces covering n vertices.

Original entry on oeis.org

1, 0, 1, 2, 15, 156, 4665, 269618, 31573327, 7375159140, 3450904512841, 3240500443884718, 6113078165054644451, 23175001880311842459108, 176546824267008236554238517, 2701847513793569606737940203894, 83036203475880811677609125194805687
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2019

Keywords

Comments

A graphical necklace is a simple graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of simple graphs under rotation of the vertices. Covering means there are no isolated vertices. These are a kind of partially labeled graphs.

Examples

			Inequivalent representatives of the a(2) = 1 through a(4) = 15 graphical necklaces:
  {{12}}  {{12}{13}}      {{12}{34}}
          {{12}{13}{23}}  {{13}{24}}
                          {{12}{13}{14}}
                          {{12}{13}{24}}
                          {{12}{13}{34}}
                          {{12}{14}{23}}
                          {{12}{24}{34}}
                          {{12}{13}{14}{23}}
                          {{12}{13}{14}{24}}
                          {{12}{13}{14}{34}}
                          {{12}{13}{24}{34}}
                          {{12}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}}
                          {{12}{13}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}{34}}
		

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, eulerphi(n/d)*sum(k=0, d, (-1)^(d-k)*binomial(d,k)*2^(k*(k-1)*n/(2*d) + k*(n/d\2))))/n)} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = (1/n)*Sum{d|n} phi(n/d) * Sum_{k=0..d} (-1)^(d-k)*binomial(d,k)*2^( k*(k-1)*n/(2*d) + k*(floor(n/(2*d))) ). - Andrew Howroyd, Aug 19 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 19 2019

A324464 Number of connected graphical necklaces with n vertices.

Original entry on oeis.org

1, 0, 1, 2, 13, 148, 4530, 266614, 31451264, 7366255436, 3449652145180, 3240150686268514, 6112883022923529310, 23174784819204929919428, 176546343645071836902594288, 2701845395848698682311893154024, 83036184895986451215378727412638816, 5122922885438069578928905234650082410736
Offset: 0

Views

Author

Gus Wiseman, Mar 01 2019

Keywords

Comments

A graphical necklace is a simple graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of simple graphs under rotation of the vertices. These are a kind of partially labeled graphs.

Examples

			Inequivalent representatives of the a(2) = 1 through a(4) = 13 graphical necklaces:
  {{12}}  {{12}{13}}      {{12}{13}{14}}
          {{12}{13}{23}}  {{12}{13}{24}}
                          {{12}{13}{34}}
                          {{12}{14}{23}}
                          {{12}{24}{34}}
                          {{12}{13}{14}{23}}
                          {{12}{13}{14}{24}}
                          {{12}{13}{14}{34}}
                          {{12}{13}{24}{34}}
                          {{12}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}}
                          {{12}{13}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}{34}}
		

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[csm[#]]<=1,#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
  • PARI
    \\ B(n,d) is graphs on n*d points invariant under 1/d rotation.
    B(n,d)={2^(n*(n-1)*d/2 + n*(d\2))}
    D(n,d)={my(v=vector(n, i, B(i,d)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); sumdiv(n, e, eulerphi(d*e) * moebius(e) * u[n/e] * e^(n/e-1))}
    a(n)={if(n<=1, n==0, sumdiv(n, d, D(n/d,d))/n)} \\ Andrew Howroyd, Jan 24 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 24 2023
Previous Showing 11-14 of 14 results.