A323866
Number of aperiodic toroidal necklaces of positive integers summing to n.
Original entry on oeis.org
1, 1, 1, 3, 5, 12, 18, 42, 72, 145, 262, 522, 960, 1879, 3531, 6831, 13013, 25148, 48177, 93186, 179507, 347509, 671955, 1303257, 2527162, 4910681, 9545176, 18579471, 36183505, 70540861, 137603801, 268655547, 524842088, 1026067205, 2007118657, 3928564113
Offset: 0
Inequivalent representatives of the a(6) = 18 toroidal necklaces:
[6] [1 5] [2 4] [1 1 4] [1 2 3] [1 3 2] [1 1 1 3] [1 1 2 2] [1 1 1 1 2]
.
[1] [2] [1 1]
[5] [4] [1 3]
.
[1] [1] [1]
[1] [2] [3]
[4] [3] [2]
.
[1] [1]
[1] [1]
[1] [2]
[3] [2]
.
[1]
[1]
[1]
[1]
[2]
-
List([0..30], A323866); # See A323861 for code; Andrew Howroyd, Aug 21 2019
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[If[n==0,1,Length[Union@@Table[Select[ptnmats[k],And[apermatQ[#],neckmatQ[#]]&],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]]],{n,0,10}]
A086675
Number of n X n (0,1)-matrices modulo cyclic permutations of the rows.
Original entry on oeis.org
1, 2, 10, 176, 16456, 6710912, 11453291200, 80421421917440, 2305843009750581376, 268650182136584290872320, 126765060022823052739661424640, 241677817415439249618874010960064512, 1858395433210885261795036719974526548094976
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 27 2003
From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(2) = 10 digraphical necklace edge-sets:
{}
{(1,1)}
{(1,2)}
{(1,1),(1,2)}
{(1,1),(2,1)}
{(1,1),(2,2)}
{(1,2),(2,1)}
{(1,1),(1,2),(2,1)}
{(1,1),(1,2),(2,2)}
{(1,1),(1,2),(2,1),(2,2)}
(End)
-
Table[Fold[ #1+EulerPhi[ #2] 2^(n^2 /#2)&, 0, Divisors[n]]/n, {n, 16}]
(* second program *)
rotdigra[g_,m_]:=Sort[g/.k_Integer:>If[k==m,1,k+1]];
Table[Length[Select[Subsets[Tuples[Range[n],2]],#=={}||#==First[Sort[Table[Nest[rotdigra[#,n]&,#,j],{j,n}]]]&]],{n,0,4}] (* Gus Wiseman, Mar 04 2019 *)
A324463
Number of graphical necklaces covering n vertices.
Original entry on oeis.org
1, 0, 1, 2, 15, 156, 4665, 269618, 31573327, 7375159140, 3450904512841, 3240500443884718, 6113078165054644451, 23175001880311842459108, 176546824267008236554238517, 2701847513793569606737940203894, 83036203475880811677609125194805687
Offset: 0
Inequivalent representatives of the a(2) = 1 through a(4) = 15 graphical necklaces:
{{12}} {{12}{13}} {{12}{34}}
{{12}{13}{23}} {{13}{24}}
{{12}{13}{14}}
{{12}{13}{24}}
{{12}{13}{34}}
{{12}{14}{23}}
{{12}{24}{34}}
{{12}{13}{14}{23}}
{{12}{13}{14}{24}}
{{12}{13}{14}{34}}
{{12}{13}{24}{34}}
{{12}{14}{23}{34}}
{{12}{13}{14}{23}{24}}
{{12}{13}{14}{23}{34}}
{{12}{13}{14}{23}{24}{34}}
Cf.
A000031,
A002494,
A006129,
A008965,
A184271,
A192332 (non-covering case),
A323858,
A323859,
A323870,
A324461,
A324462,
A324464.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
-
a(n)={if(n<1, n==0, sumdiv(n, d, eulerphi(n/d)*sum(k=0, d, (-1)^(d-k)*binomial(d,k)*2^(k*(k-1)*n/(2*d) + k*(n/d\2))))/n)} \\ Andrew Howroyd, Aug 19 2019
A324464
Number of connected graphical necklaces with n vertices.
Original entry on oeis.org
1, 0, 1, 2, 13, 148, 4530, 266614, 31451264, 7366255436, 3449652145180, 3240150686268514, 6112883022923529310, 23174784819204929919428, 176546343645071836902594288, 2701845395848698682311893154024, 83036184895986451215378727412638816, 5122922885438069578928905234650082410736
Offset: 0
Inequivalent representatives of the a(2) = 1 through a(4) = 13 graphical necklaces:
{{12}} {{12}{13}} {{12}{13}{14}}
{{12}{13}{23}} {{12}{13}{24}}
{{12}{13}{34}}
{{12}{14}{23}}
{{12}{24}{34}}
{{12}{13}{14}{23}}
{{12}{13}{14}{24}}
{{12}{13}{14}{34}}
{{12}{13}{24}{34}}
{{12}{14}{23}{34}}
{{12}{13}{14}{23}{24}}
{{12}{13}{14}{23}{34}}
{{12}{13}{14}{23}{24}{34}}
Cf.
A000031,
A000939,
A001187,
A006125,
A006129,
A008965,
A184271,
A192332,
A275527,
A323858,
A323859,
A323870,
A324461,
A324462,
A324463.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[csm[#]]<=1,#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
-
\\ B(n,d) is graphs on n*d points invariant under 1/d rotation.
B(n,d)={2^(n*(n-1)*d/2 + n*(d\2))}
D(n,d)={my(v=vector(n, i, B(i,d)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); sumdiv(n, e, eulerphi(d*e) * moebius(e) * u[n/e] * e^(n/e-1))}
a(n)={if(n<=1, n==0, sumdiv(n, d, D(n/d,d))/n)} \\ Andrew Howroyd, Jan 24 2023
Comments